

Integrating Crop Rotations into High Tunnel Production Systems

Cary L. Rivard, Ph.D.

Dept. of Horticulture and Natural Resources

Olathe Horticulture Center

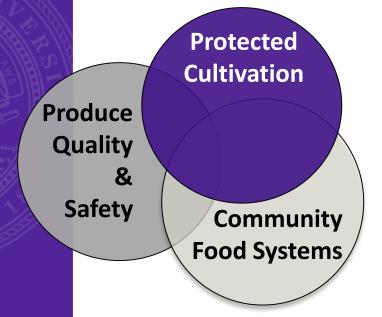
Photo courtesy: D. Loewen

www.hightunnels.org

Events and Happenings

- Tomato Nutrition in High Tunnels Webinar: 03/15/2015.
- View All Events and Happenings

Do you know of any conferences or seminars featuring


Featured:

- Moving the Needle, Accomplishments of the National Strawberry Sustainability Initiative 2013 -2014
- → Cool Season Vegetables

Join the [hightunnels] listserv:

The [hightunnels] listserv comprises over 850 members, most of which are growers using high tunnels. The listserv is a great place to learn what growers are doing with high tunnels, what crops and

High Tunnel Production Systems

HT Research at KSU

HT Soil Management

- Cover cropping
- USDA OREI

Tomato Grafting Program

- SARE, SCRI
- Rootstock
- Propagation
- Transportatio

United States Department of Agriculture National Institute of Food and Agriculture

High Tunnel Variety Trials

Day Neutral Strawberry Production National Strawberry

- Variety and Evaluation Sustainability
- NSSI / Wal-mart
- Postharvest Quality

HT Production of Sweetpotato Slip

- 2014 SARE R&E
- Production, Economics

Kansas State University

www.hfrr.ksu.edu

Manhattan | Olathe

Soilborne Disease Management

Integrated Pest Management

An integrative management system for pests and pathogens focused on increased KNOWLEDGE of production systems.

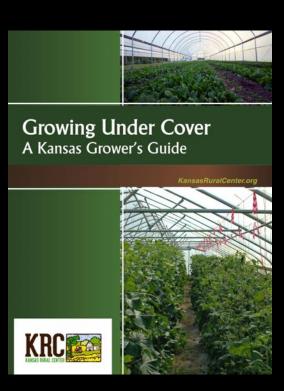
- Crop rotation
- Sanitation
- Raised beds
- Compost
- Soil solarization
- Biofumigation
- Chemical control
- Biological controls
- Plant resistance/tolerance

Get creative with your structure(s)

Crop Rotation in HTs

Benefits of Crop Rotation

Soilborne Disease

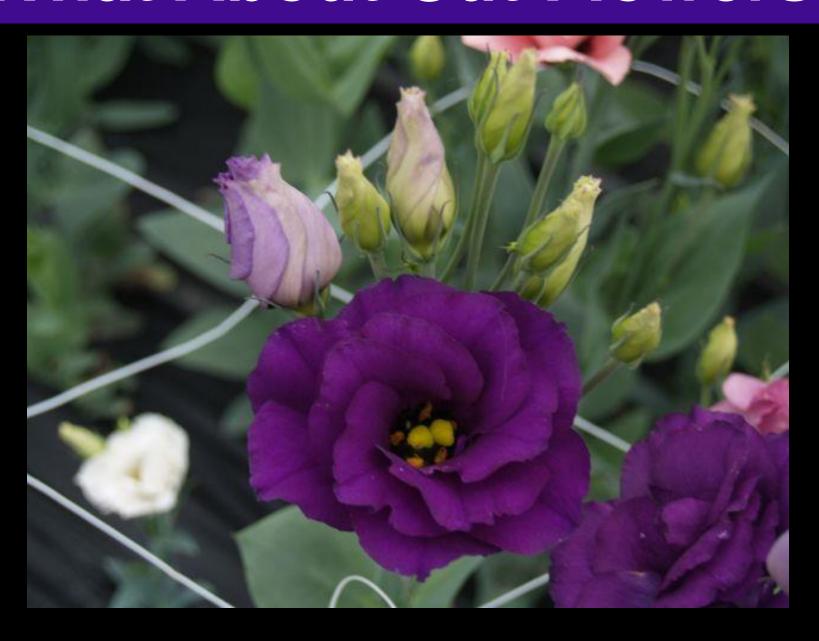


Fertility Management

Crop Rotation in HTs

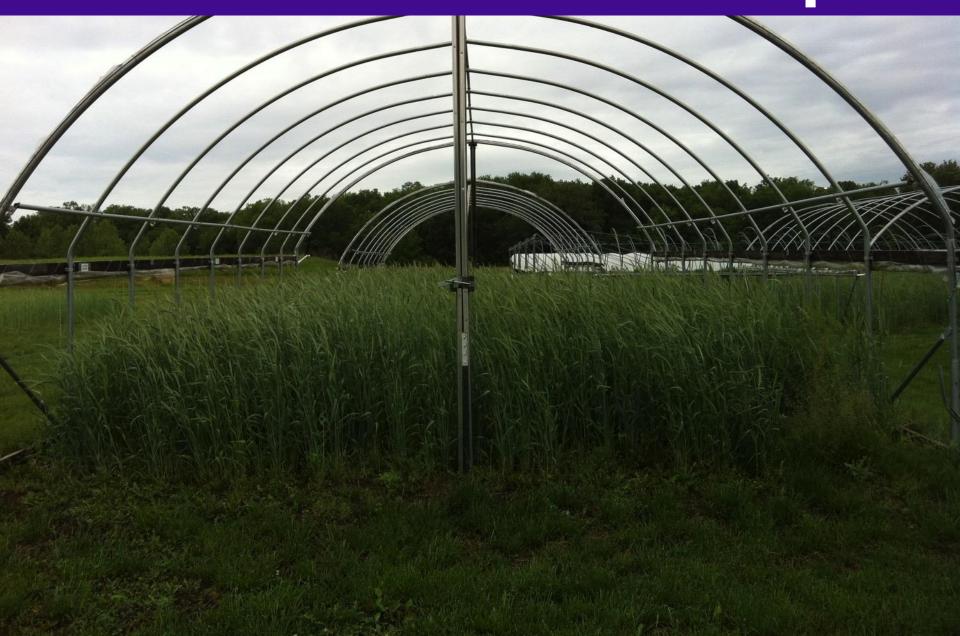
The Challenge: Generating Per SqFt Revenue

Crop Type	Production Window	Sale Price	Gross Revenue/ft²	HT Crop
Tomato	Apr – Oct	\$2.50/lb	\$3.66	1
Lettuce	Sept – May	\$2.00/head	\$1.30	2
Spinach	Sept – May	45.50/lb	\$1.09	3
Cucumber	Apr – Aug	\$1.50/lb	\$1.62	4
Bell Pepper	Apr – Oct	\$1.50/lb	\$2.30	5
Salad Mix	Sept – May	\$8.00/lb	\$2.40	6
Beets	Sept – May	\$2.00/lb	\$1.92	


- \$0.44/ft²/year fixed costs for structure (KRC, 2017)
- \$0.49/ft²/year fixed costs for structure (NCSU, 2013)
 - 2 years of tomato production (\$2.60/lb) paid for structure
 (Sydorovych et. al., 2013)

Crop Rotation

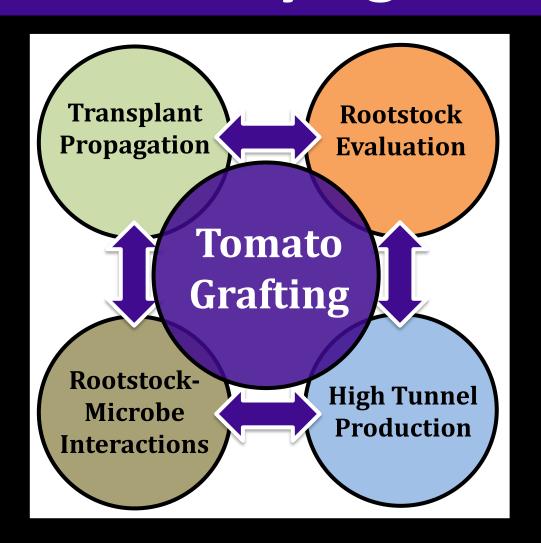
Rotate across plant families

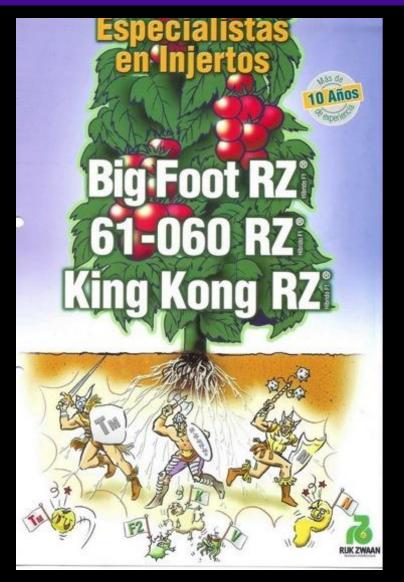

Alliaceae	Asteraceae	Brassicaceae	Cucurbitacae	Fabaceae	Solanaceae
Asparagus Chives Garlic Leeks Onions Shallots	Lettuce Endive Radicchio	Broccoli Brussels sprouts Cabbage Cauliflower Collards Mustard Radish Rutabaga Turnip	Cantaloupe Cucumbers Honeydew Pumpkins Squash Watermelon	All beans English peas Southern peas	Eggplant Peppers Potatoes Tomatoes
Apiaceae	Polygonaceae	Chenopodiaceae	Ipomea	Malvaceae	Poaceae
Carrot	Rhubarb	Spinach Beets	Sweet potato	Okra	Corn

What About Cut Flowers?

What About Cover Crops?

What About Cover Crops?




	Biomass	(lbs/acre)	C:N	Available N	
	Rye	Vetch	C.N	(lbs/acre)	
High Tunnel	3749.4	329.4	9.8	83.2	
Field	721.8	1589.1	8.5	54.2	

What About Cover Crops?

- OREI Regional Grant
 - UMN, UKY
 - Ashlee Skinner (MS)
- Comparing benefits of CC vs. spinach
 - Economic vs soil-building
- Identifying crops for HT production
 - "Short windows"
 - Summer, fall, over-winter

Disease Management

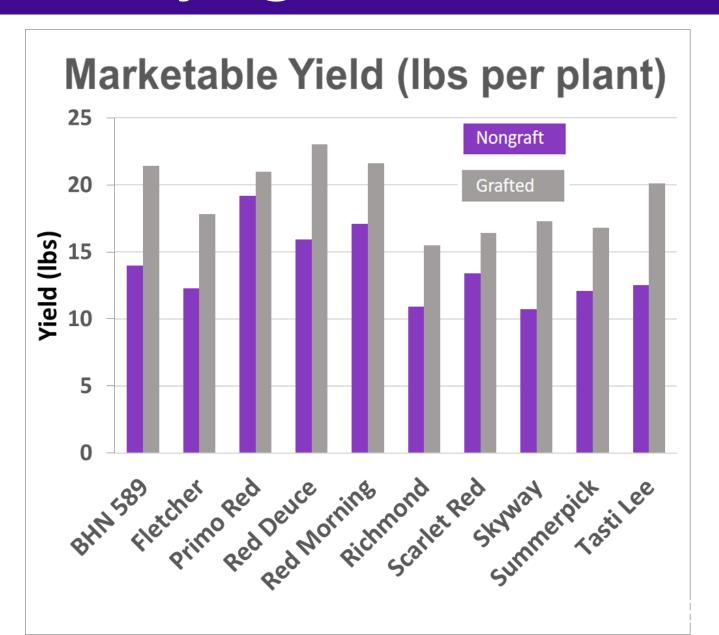
Pathogen Eradication with Resistant Rootstocks

	ot nematode soil poulation ^u at First harvest ^w	Final harvest ^x	
Non-grafted	8357 d	1964 b	
Self-grafted	8751 d	1228 b	
Telone II ^y	379 b	1260 b	
Big Power ^z	77 a	40 a	
Beaufort ^z	2680 c	2542 b	
Maxifort ^z	3091 c	1251 b	

= Non-, self-grafted	= Big Power
= Fumigated (Telone II)	= Beaufort, Maxifort

Disease Management

Dootatoolya	TMV	Corky Root	Fusarium Wilt		Verticillium	Root-knot	Southern	Plant
Rootstocks			Race 1	Race 2	Wilt (r1)	Nematode	Bligh	Vigor
Maxifort *	R	R	R	R	R	MR	HR	+++
Multifort *	R	S	R	R	S	R	HR	+++
Arnold **	R	S	R	R	R	R	MR	++
Estamino ***	R	S	R	R	R	R	NA	+
RST-04-106 ****	R	R	R	R	S	R	MR	+
Emperador *****	R	S	R	R	R	R	NA	+
Big Power *****	R	R	R	R	R	R	HR	++
Colosus RZ *****	R	R	R	R	R	S	NA	+++
Anchor-T *****	R	S	R	R	R	R	NA	NA


R=Resistant, **HR**=Highly Resistant, **MR**=Moderately Resisitant, **S**=Susceptible, **NA** = Not Available

* = Seminis Seed Co. ** = Syngenta Seeds *** = Enza Zaden

**** = DP Seeds ***** = Rijk Zwaan ***** = Takii Seed

- Rootstocks function as a "rotation" in very few situations.
 - Heirloom or susceptible cultivars
 - High (qualitative) resistance
- They can help with quantitative resistance
- More useful as preventative measure
- Rootstock rotations and polycultures

Dan Kuhn, Courtland, KS

2013-18 High Tunnel Bell Pepper Variety Trials

Kansas State University
Horticulture Research and Extension Center
Olathe, Kansas

Paul Andersen, Kimberly Oxley, & Cary Rivard

530 plants per 4800 ft² tunnel @ \$1.50/lb = \$2.17 per ft²

Declaration (2013-2016)

Intruder (2013-2016)

Red Knight (2013-2016)

Galileo (2016)

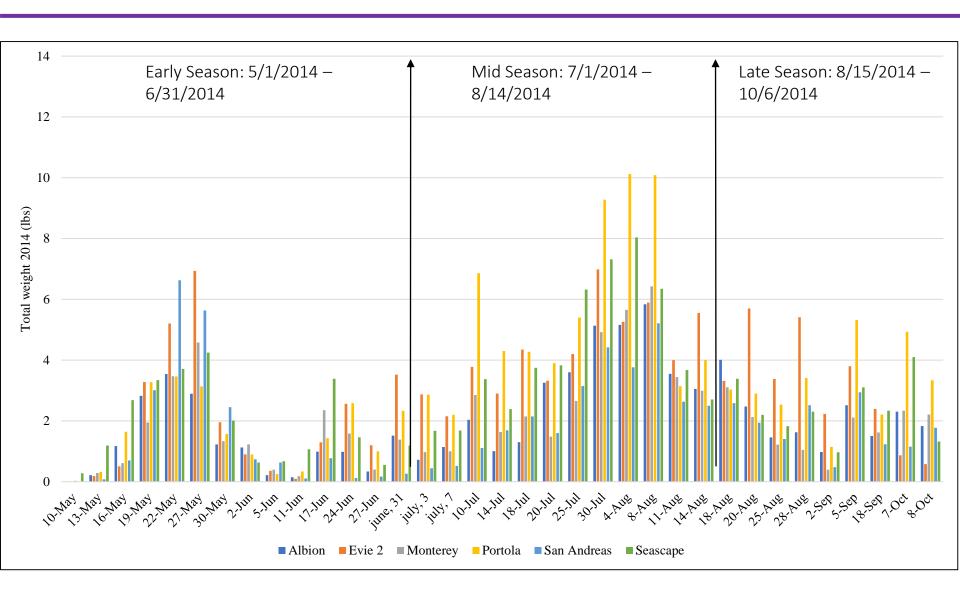
Karisma (2013-2016)

Vanguard (2013-2016)

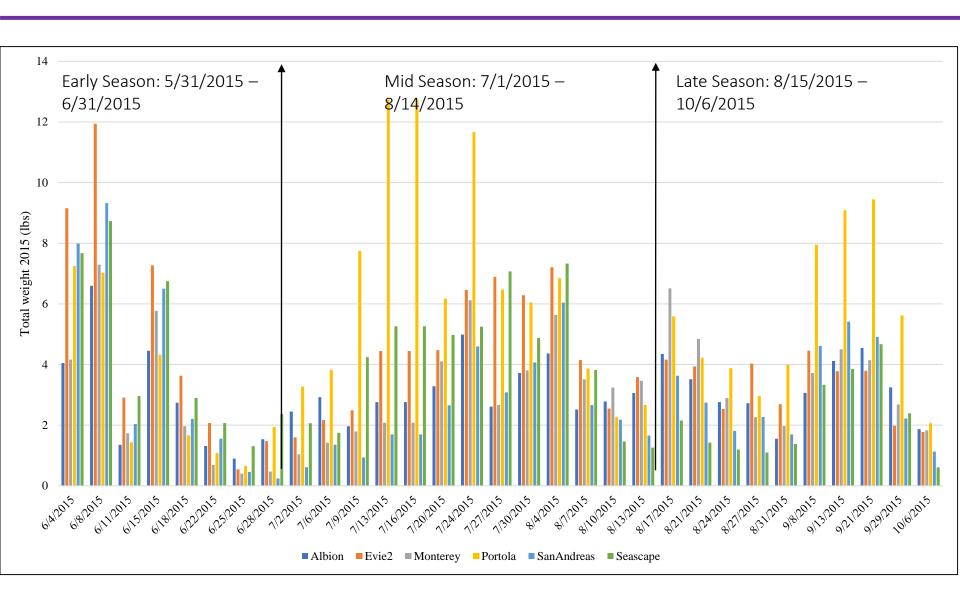
Yield and Quality of Spring-Planted, Day-Neutral Strawberries in a High Tunnel

Kelly Gude, Sara Gragg, Cary Rivard, Eleni Pliakoni

Fall-planted Strawberry Production



Strawberries Grown in High Tunnels


- Growing season extension
 & enhanced crop
 productivity
 - Increased yields, size, soluble solids, branchcrown development, vigor
 - Early and late season prices
- High tunnels in Kansas
- Challenges growing in high tunnels
- Solutions
 - Spring-planted dayneutral cultivars
 - Evaporative Cooling

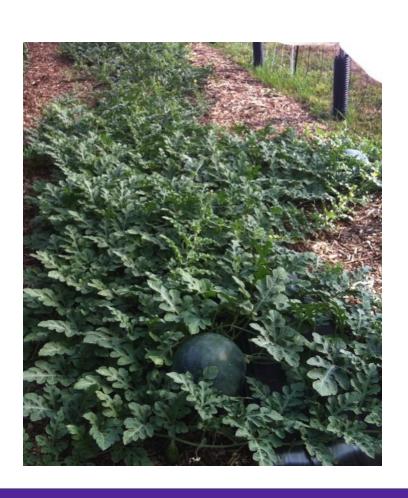
Materials and Methods

Materials and Methods

	Total fr	uit yield ^w	Marketab	le fruit yield	Marketability	
Cultivar	weight	size	weight	size	weight (%)	
	(kg/plant)	(g/fruit)	(kg/plant)	(g/fruit)		
			2014 ^{xy}			
Albion	0.39 bc^z	10.49 ab	0.34 bc	11.06 ab	88.6 a	
Evie 2	0.53 ab	8.79 cd	0.42 ba	9.36 cd	79.4 b	
Monterey	0.40 bc	9.64 bc	0.34 bc	9.92 bc	84.8 ab	
Portola	0.60 a	11.06 a	0.51 a	11.90 a	812	
San Andreas	0.33 c	11.06 a	0.27 c	11.	@ \$4/ID	
Seascape	0.48 ab	8.22 d	- o st2	tunnel	\bigcirc \downarrow \downarrow \downarrow	
P value	***	· · · · · · · · · · · · · · · · · · · ·	1800 IL	(CIT		
Seaso	nlar	its per	700			
160	O pia.	c +2				
Albion	1 76 C	er 11-	v.z4 b	7.80 bc	82.5 ab	
Evie 2 = \$	1.10 6	1.20 bc	0.51 a 0.27 c 4800 ft ² 0.24 b 0.28 b 0.26 b	8.13 ab	76.5 b	
Monter	0.30 b	7.44 bc	0.26 b	8.04 b	83.5 a	
Portola	0.51 a	8.71 a	0.42 a	9.23 a	82.0 ab	
San Andreas	0.28 b	7.97 ab	0.22 b	8.34 ab	78.9 ab	
Seascape	0.33 b	6.30 c	0.26 b	6.63 c	79.2 ab	
P value	***	***	***	***	*	
Season Mean	0.34	7.51	0.28	8.03	80.4	

2017-18 High Tunnel Canteloupe and Watermelon Trials

Kansas State University
Horticulture Research and Extension Center
Olathe, Kansas
Kimberly Oxley, Extension Associate
Paul Andersen, Research Assistant
Cary Rivard, Extension Specialist


Supported by the Kansas Vegetable Growers Association

Materials and Methods

Seedless Watermelons

- Promesa
- Extazy
- Sorbet
- Leopard
- Solitaire
- Vanessa
- Pollinator: Accomplice

Materials and Methods

Cantaloupe

- Aphrodite
- Athena
- ME3716
- Goddess
- Grand Slam
- Home Run

Materials and Methods

Cultural Methods

- Planted May 15 (transplants)
- 24" in-row spacing
- 5' between rows
- Pre-plant and fertigation
- 1 pollinator per 5 plants (watermelon)
- No trellising was used

Harvested: June 30-August 18

400 plants per 4800 ft² tunnel @ \$0.54/lb = \$0.90 per ft²

- pound
- Revenue per square feet: \$0.90

Watermelons

Harvested: July 10-August 18


Total Pounds: 2,964

= \$0.89 per ft² or per pound

20.09 to \$0.83 per square foot:

Local Retail June/July: \$0.59 per pound

Revenue per square foot: \$0.89

High Tunnel Slip Production for Organic Sweetpotato in the Midwest

Zachary Hoppenstedt, Jason Griffin, Eleni Pliakoni, Mykel Taylor, & Cary Rivard,

Propagation Cycle

Cultivars are propagated vegetatively.

Roots are sprouted, sprouts are cut and transplanted

Foundation seed is sourced yearl to maintain healthy stock

Propagation Cycle

Materials and Methods

Sweetpotatoes are placed in ground and covered with 2-3" soil and clear plastic. Mid to late Spring.

About 4 weeks later when we see the slips breaking the surface, we remove the plastic.

Start cutting when they reach 8" – 12"

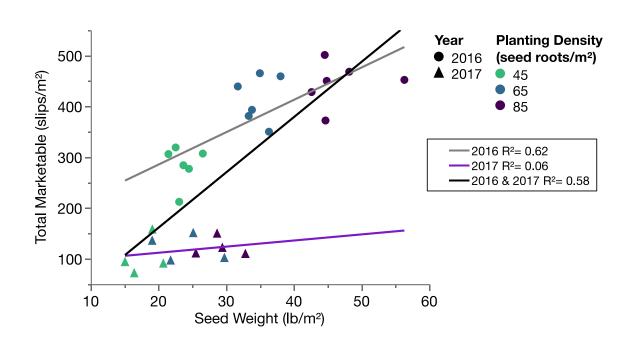


Figure 2. Olathe HT marketable slip yield by planting density, harvest and year

Figure 3. Correlation of HT plot weight and marketable slip yield

2016 & 2017 Total Marketable = -56.48755 + 10.879733*Seed Weight

Table 1: Slip quality parameters as influenced by slip production system (2016): Combined Sites and Harvests

Treatment	Fresh Weight (g)	Length (cm)	Stem Diameter (mm)	Compactness (mg)	Nodes/Length	Leaf Area/Length (cm²)
HT	11.71	25.87	3.94	37.07	0.33	5.75
OF	12.78	23.37	3.94	52.38	0.45	7.17
P value	0.2751	0.0619	0.9666	<.0001	<.0001	<.0001

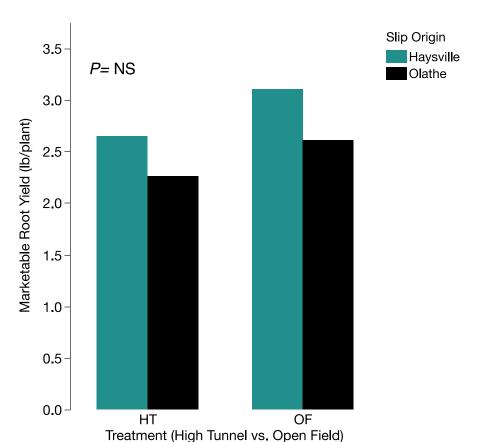


Figure 4. Marketable root yields by slip production system and trial location (2016)

Sweet Potato Slip Research Results

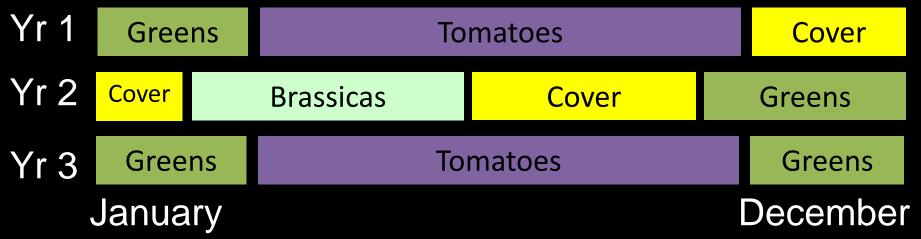
- $65 \text{ roots/m}^2 \text{ and } @ $130/1000 \text{ slips}$ = \$4.30 per ft²
- GOTHE TOOKING at G0 vs. G1 vs. G2 planting stock.

Crop Type	Production Window	Sale Price	Gross Revenue/ft ²
Organic Slips	Apr – Jul	\$130/1000 slips	\$4.30
Tomato	Apr – Oct	\$2.50/lb	\$3.66
Cucumber	Apr – Aug	\$1.50/lb	\$1.62
Bell Pepper	Apr – Oct	\$1.50/lb	\$2.30

Revenue based on average trial yields for two harvests and regional price for foundation seed. All other crop values are based on enterprise budgets from Kansas Rural Center's Growing Under Cover v2 Dec. 2016.

Yr 1	Greens	Tomatoes	Cover
Yr 2	Cover	Grafted Tomatoes	Greens
Yr 3	Greens	Tomatoes	Cover
	January		December

Yr 1	Greens	Tomatoes	Cover
Yr 2	Cover	Strawberries	Greens
Yr 3	Greens	Tomatoes	Cover
,	January		December


Cucurbits Offer a "Short Season" Alternative

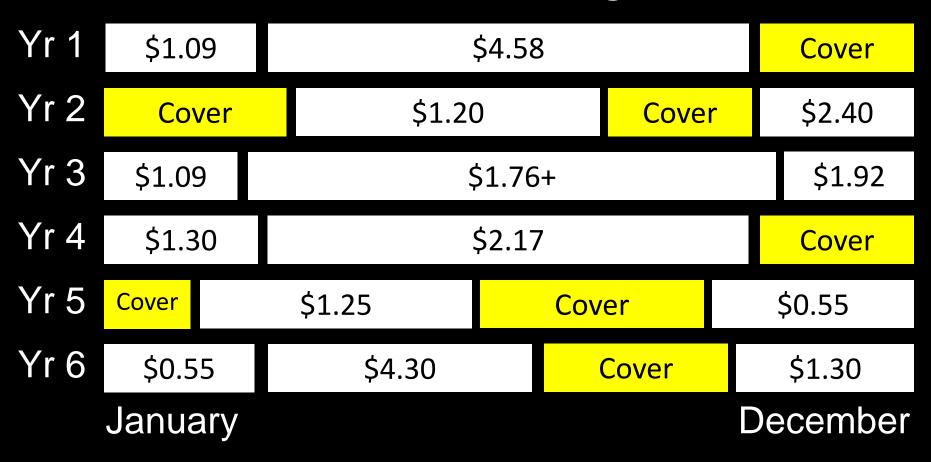
English Cucumber

A few scenarios for planning your high tunnel

Yr 1 Greens Tomatoes Cover

Yr 2 Cover Sweetpotato Slips Cover Greens

Yr 3 Greens Tomatoes Greens


January December

Yr 1	Gree	ns	Grafte	Grafted Tomatoes				Cover	
Yr 2	Cover		Cucurbits/Melons Cove		r	Greens			
Yr 3	Green	IS	Strawberries					Greens	
Yr 4	Gree	ns	Peppers				Cover		
Yr 5	Cover		Brassicas		Cover			Greens	
Yr 6	Greens		Sweetpotato Slips		(Cover		Greens	
January						December			

Think About Revenue in the Long Term

Average Annual GROSS Rev = \$4.15 per ft² Overhead (structure) Costs = 10.6%

Think About the Timing – Pest Cycles, Labor, etc.

Yr 1	Cover	Grafted Tomatoes					Greens
Yr 2	Greens		Cover	Cucurbits/Melons			Greens
Yr 3	Greens			Cover			
Yr 4	Cover			Cover			
Yr 5	Greens		Cov	/er	Brassicas		
Yr 6	Greens	Greens Sweetp			Cover		Greens
January						ecember	

Summary

- Don't grow tomatoes every year
 - Peppers not a rotation crop
 - Consider inter-specific rootstocks
- Develop new systems
 - Day-neutral strawberries
 - Sweetpotato slips
 - Melons
 - CBD Hemp??
- Recognize the value of crop rotation and soil building
- Find a niche and have fun!

