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Abstract: In 1982, Dr. Sam Vaknin pondered the idea of reconstructing physics based on time as a field. His idea 

appeared in his doctorate dissertation as an amendment to the Dirac spinor equation. Sam saw the Quantum Field 

Theory particles and momentum and energy as a result of the language of physics and of the way the human mind 

perceives reality and not as reality. To the author’s opinion, it is a revolution of the language itself and is not a new 

interpretation of the existing language. The Special Theory of Relativity was a revolution and so was the General 

Theory of Relativity but yet these theories did not challenge the use of momentum and energy but rather gave them 

new relativistic interpretation. Later on, Quantum Mechanics used Energy and Momentum operators and even 

Dirac’s orthogonal matrices are multiplied by such operators. Quantum Field Theory assumes the existence of 

particles which are very intuitive and agree with the human visual system. Particles may be merely a human 

interpretation of events that occur in the human sensory world. This paper elaborates on one specific interpretation 

of Sam Vaknin’s idea that the author has developed from 2003 up to August 2018. It is a major improvement of 

previously published papers and it summarizes all of them and includes all the appendices along with new ideas. A 

key idea in this paper is, that while a preferable coordinate of time violates the principle of general relativity, a 

scalar field does not, because it does not point to any preferable direction in space time, moreover, such a scalar field 

need not be unique. 
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Introduction 

This paper’s approach to the description of matter  is geometrical rather than algebraic. In that aspect, it is more 

loyal to General Relativity than to Super Algebraic approaches [1] that extend the dimensionality of space-time 

based on algebras such as Grassman’s Algebra. In that aspect, it presents a much simpler view of what matter is. 

This paper summarizes two previous papers [2], [3] and contains new results. For background, the reader is referred 

to the work of Zvi Scarr and Yaakov Friedman [4] as a recommended preliminary material, though uniform 

covariant acceleration is not identical to a model of force fields as curvature of trajectories of different types of 

clocks and of gravity, as a response of space-time - by curving itself as an error correction mechanism. 

On a Big Bang space-time manifold, it is reasonable to define a Morse function [5] which is a submersion [6] from 

space-time to the real numbers. The idea is that every event can be connected by an integral curve to an S3 manifold 

of an infinitely small radius on which clocks can be synchronized and then from all such curves, the Morse function 

is defined as the length of the maximal proper time curve or curves from the sub-manifold to the event. A global 

Morse function as time may not be measured along a single path and if it represents measurement by material 

clocks, may not be always geodesic because material clocks interact. This approach, however, in some geometries 

such as the big bang metric offers global time though no global time coordinate and this idea is not new [7]. 

Cosmologists will argue that such a definition is problematic because there is a difficulty in defining a limit 

backwards in time to a sub-manifold on which clocks can be synchronized. To those readers, the author says that 

also on De-Sitter on open slicing and on Anti De Sitter manifolds, such a Morse function can be defined, although it 

may not be unique and as we shall see, uniqueness is indeed not required. The definition of a Morse function in 

space-time, does not even require synchronization of clocks on a sub-manifold. All it requires is to solve some 

minimum action integral with several symmetries. The longest proper time curve from each event to a three 

dimensional sub-manifold is valid as long as the resulting submersion function is a Morse function, i.e. its 

singularities are non - degenerate. Such a sub-manifold can be represented as a leaf of a foliation [8] of space-time 

where the Morse function is zero. The classification of non degenerate singularities can be found in the Morse 

lemma [9]. How can we describe time as a Morse function in order to account for matter ? What is matter ? We try 

to reconstruct physics bottom-up from its very foundations.  We borrow from the old language of physics the idea of 

time and Minkowsky space-time manifold, though it may be arguable that even space can be deduced from time. 

The 1982 argument of Dr. Sam Vaknin was that as observers, we can imagine being out of space but that even 

language requires time and therefore, time should account for matter and particles [10] as there is no physical 

phenomenon out of time.  

Matter is characterized by force fields. It is a phenomenological approach. In geometric terminology, forces bend 

trajectories of clocks because a 4-acceleration of a physical clock is perpendicular to it’s 4-velocity. We can say that 

forces prohibit geodesic motion of material clocks in space-time. Contrary to forces, according to the General 

Theory of Relativity, motion in a gravitational field is along geodesic curves but in curved space-time. Our objective 

will be to reach an equation that combines these two types of motion, non-geodetic and geodetic in curved space-

time. The non – geodetic motion is not anticipated by the metric alone, which means that we will need an additional 

structure beside the metric tensor, when we borrow the language of the General Theory of Relativity. This paper is 

not mathematically difficult to understand but it does offer new perception challenges. Following are important 

points that the author asks the reader to pay attention to. These are very important points: 
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1) A foliation which is defined by sub-manifolds perpendicular to a vector field is properly defined as 

covariant because the property of perpendicular vectors does not depend on choice of coordinates. 

Foliations can be defined in a non-covariant way but this is not the case in this paper. 

 

2) Time-like curves that describe a physical observable, may not be unique. Such a representation is 

inherently prone to symmetries. 

 

3) By discussing a “field of time” to account for matter, the idea is to capture non –geodesic motion which is 

not anticipated by the metric alone and to explain the origin of forces not by the traditional quantum 

particles exchange or by the classical potentials or vector potentials but by a field that causes non geodesic 

motion of material clocks that measures time. In another interpretation of such a field, we can say that the 

extra geometrical information that is needed to represent forces, and thus matter, is stored in the geometry 

of certain foliations of space time, though due to Lagrangian symmetry, these foliations and the field are 

not unique. 

Throughout this paper    denotes the contravariant coordinate system with index  . The comma denotes ordinary 

derivative,     
  

   , which will often be abbreviated,       . Likewise, semicolon denotes the ordinary 

covariant derivative that uses the Christoffel symbols      
   

         
 .      is the metric tensor.   is its 

determinant and     is the volume coefficient in integration and the volume element is      .    can be also 

written as                 in Cartesian coordinates. 

 

The Reeb field and its electromagnetic interpretation 

Describing a trajectory of a clock, we can write 
   

  
    and     

   

  
  . The latter is a result of 

             
   

  
       

   

  
                                                          (1) 

where   is the speed of light,    is velocity and in the Special Theory of Relativity it is simply 

   
            

        
                                                                                          (2) 

In coordinate system          .   measures proper time. 

We can normalize the velocity 4-vector and get 
  

 
 

   
  
 

 
  

 
 
  
 

 

        
.  A scaled acceleration 

  

   measures the 

acceleration of this unit vector 
  

 
 in relation to an arc length    so         and we can write 

 
 

 

 

   
 

  

  
                                                                                         (3) 
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Denoting our Morse function  , can we derive a vector which will be equivalent to an acceleration of a clock that 

moves along the integral curves, generated by    
  

    ? In this case,      is generally not constant. For example, 

if it is constant and positive, we may choose a monotonically increasing analytic function of   instead of   such as 

   and still have a Morse function.  To see a non - vanishing          the reader can refer to Appendix E, see term 

(80). 

We now define the Reeb vector (Reeb, 1948, 1952 [11]) of   , and we will develop the Reeb vector   as it was 

originally developed in 1948 in the language of De Rham Cohomology, with adjustment to be derived from the 

normalized vector. 

  
  

  
   ,                                                                               (4) 

and for the sake of brevity, we write      
  or if   is a complex scalar field,   

        
   

 
 and    

  

   . 

 Note:        is the famous Godbillon - Vey cohomology equivalence class [12]. 

If we limit the discussion to a real scalar function  , The form   can be easily calculated as   
  

 
    such that   

                                                                        
  

 
 

    

                                                                           (5) 

 

   

  

  
 

 

   

  

  
  

    

  
 

    

  
 
 

 
    

  
 

    

  
 
 

  

    

  
 
 

 
    

  
 
 

  

 

 
 
  

 

  

  
 

   
 

  
  

  

  
  

 

 
 
  

 

  

  
 

    

  
  

  

  
  

  

 

  

  
 

  

 

  

  
 

But why to use,  
 

 
   

 

 
 
  

 
 

    

  

  

  
  and not simply,  

  

 
 ?   The reason is that 

  

 

  

  
  .  We can 

therefore consider 
 

 
  as a substitute for the 4-acceleration 

  

  
 with the very important difference from      

  that    does not vanish because   is not constant. Also notice that if   ,    are parallel at every even,       

yields the same    vector. We may now write the Lie derivative [13] of 
  

  
 with respect to the vector field 

   

  
  

    
   

  
 
  

  
  

   

  
 

  

  
     

   

  
   

  

  
                                                            (6) 
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In which the second term is positive because the differentiated 
  

  
 vector has a low index. 

The first term becomes, 

 
   

  
 

  

  
    

       

 
 

   

  

    

      
       

 
 

       

                                         (7) 

The second term is, 

 

 
   

  
   

  

  
 

       

 
 

       

    
       

 
 

  

  
                                                       (8) 

 

We add (7) and (8) to get (6) and notice that  
       

 
 

       

 
 

       

 
 

       

 
 

  

 
  from which (6) 

becomes 

 

    
   

  
 
  

  
  

  

 
 

  

  
 

       

    
  

  
 

       

    
  

 
                                             (9) 

 

(9) is an interesting surprise. In (9), we also saw how we can generalize the definition of 
  

 
 to the complex case. 

We are very close to define a field that describes an acceleration in space-time but we have a problem. The matrix 

    
  

 

  

  
 

  

 

  

  
 is not a regular matrix. It describes rotation and scaling of the vector 

   

  
 into 

  

 
 by the following 

rule, 

   
   

  
  

  

 

  

  
 

  

 

  

  
 

   

  
 

  

 

  

  

   

  
 

  

 

   

  

  

  
 

  

 

 

 
  

  

  
 

  

 
                          (10) 

This is where we clearly see why uniqueness of  
  

  
 is not required,     describes perpendicular rotation and 

scaling and there are more than just the two vectors, 
  

  
 and 

  

 
 that can represent    . The invariance of 

  

 
  if    is 

replaced by a monotone smooth function of   can be found in Appendix C. Luckily, from the matrix 

     
  

 

  

  
 

  

 

  

  
  we can infer the transformation in the plane which is perpendicular to the vectors 

  

 
     

  

  
 up to a constant scaling factor. To achieve this goal, we need to use the Levi – Civita alternating tensor 

      and not the Levi Civita alternating symbol [14]. If we use the Levi Civita symbol, we will get a tensor 

density and not a tensor. We then multiply          and get an anti-symmetric matrix     
 

 
        . It 

is easy to see that 

       
 

 
        

 

 
                                                  (11) 

To remind the reader, the relation between a Levi – Civita symbol       and the Levi – Civita tensor       is 

brought here, 

      
     

   
          ,                                                                              (12) 



6 
 

where           . Also please note that       is an alternating symbol and therefore, if it is contacted twice 

with the same vector, the result is zero,            . We are finally able to define an accelerating field in a 

covariant way. Definition, an acceleration field is: 

                                                                                      (13) 

Such that        and here                     . The reason for this   is that  

    
  

  

  

           
 

 

 
  

  

  

           
 

 

  for some acceleration vector 
  

  
 and we have a degree of 

freedom 
  

  

   

  
 

   

  

     

  
. We also know that         and         and        . The degree 

of freedom in the representation vectors,    and    together with the degree of freedom of   is U(1) * SU(2). For 

a velocity        and real    , we derive an acceleration, 

   
  

 
 

     

                                                                              (14) 

This rule appears in the Scarr – Friedman interpretation of acceleration [15] and to the author’s opinion, it did not 

receive enough attention from the physics community. Locally, using a real numbers scalar   and    
  

   ,     

can be represented similar to    , i.e.     
 

   

  

     

 
 

   

  

     

 and then            

   
  

     
 

  

     
      and therefore             becomes a Symplectic form. By Darboux theorem 

[16], there is a neighborhood around an event e in space time, where     is not degenerated, such that in local 

coordinates     can be represented as 

 

      
        

           
           

        
        

        
          

                                                                      (15) 

(13) is anti-symmetrical,          and is a regular matrix and a tensor. A short calculation immediately shows 

that 

 

 
 
           

    

 
  

 

 

  
         

 
                                                    (16) 

and in the real case  

 

 
    

   
    

 
                                                                         (17) 
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(16) has the same format as the classical electromagnetic action in the General Theory of Relativity. The question 

that arises is, how to relate the older language of energy density to 
    

 
 

    

  
, using the real case 

representation. To answer this question, the reader is referred to Appendix D, that shows that 
    

 
 is the squared 

curvature of the integral curve along 
  

  
 . That means that as an action, 

    

 
 does not need any constants when 

used in the Einstein – Grossmam action because the Ricci scalar [17] is also a curvature in units 
 

       
.  Just 

before we develop a new version of Einstein – Grossman equations, we can clarify the inevitable result from (17), 

Appendix D and [17]. In order to interpret the real numbers version 
    

 
 as energy density, we need to multiply it 

by the inverse of Einstein’s gravity constant, that is, 

  

   

    

 
   

      

      
                                                                      (18) 

But then in terms of an acceleration vector   , see (3),  
    

 
 

    

   so 

    

   
  

    

   
   

      

      
                                                                      (19) 

     is the squared norm of acceleration. If we compare that energy density to the classical non-covariant limit of 

the electrostatic field   then we have,  

    

   
 

 

 
                                                                             (20) 

where   is Newton’s gravity constant and    is the permittivity of vacuum. The relation between Minkosky norms 

and the classical non-covariant limit has another inevitable result,  

 
  

 
                                      

 

  
 

    

 
               (21) 

Where in (21),    means charge density. The divergence of the Reeb vector has a classical non-covariant limit which 

is proportional to the divergence of the electrostatic field and therefore to charge density. (20) means in the old 

language of physics, that the energy of the electric field is in a very weak acceleration field. We need to understand 

the interaction between positive and negative charge. By Occam’s razor, this can only mean an alignment of the 

Reeb vector in the classical limit with the classical electric field and that the time-like component of acceleration is 

very small. Interacting negative and positive charge therefore, must reduce the integration of 
    

 
. So how big is 

this acceleration field and what exactly does it accelerate ? (20) gives us a dauntingly small result, ~8.61cm/sec^2, 

which is less than 0.01 g, if the electrostatic field is an immense 1,000,000 volts over 1mm. We will see that due to 

unexpected gravity by electric charge, this acceleration is even smaller, about 4.305 cm/sec^2. 

We now need to develop the Euler Lagrange equations of the following action, as the minimum action problem in 

the General Theory of Relativity language, 

             
  

   
     

  

 
 

      

  
                                           (22) 

and   is the Ricci curvature [17]. The integral to be minimized over coordinates domain   is 

              
 

 
          

 
                                              (23) 

Locally, this can be written in Regge’s Causal  Dynamic Triangulation        formalism too [18] , where   is 

the dimension. 

                 
  

 

                                                     (23.1) 
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Where   is a hinge in a Causal Dynamic Triangulation, the missing angle is                 and 

        is the angle between two faces around h that share the hinge   and    is the acceleration through the two 

dimensional hinge  . 

 

From Appendix A there are two minimum action equations, one by the metric     and one by the Morse function, 

 . The results are, in               metric convention, 

 

 
      

 

 
      

       
    

 
      

 

 
                                             (24) 

And 

            
  

 
  

    

  
                                                                (25) 

From (25), the following divergence is zero, 
 

 
      

 

 
      

       
    

 
     . A proof 

can be found in Appendix B. 

Note: By (21), we immediately see a peculiar result, electric charge generates gravity in an unexpected way, by the 

term 
 

 
       

    

 
   

 

 
    

    

 
,  which is peculiar because    may not be aligned with the motion of 

the “source” of the Reeb vector 
  

 
. What is the meaning of “source” ? From the theory of foliations, integration of 

the reduced Reeb vector [11] in leaves of foliations perpendicular to    is zero along closed curves [11] and the 

integration of 
  

 
 along leaf-wise curves measures the transverse holonomy expansion. In other words, the field  

  

 
,  

when reduced to specific three dimensional leaves, behaves exactly as a classical electric field that has a source, as a 

negative or as a positive charge. (24) can be generalized for a complex  , and   can be described as a sum of a 

Hilbert orthogonal functions,                     . 

                        

                  
  

                        
  

 

 
             

 

 
                              

             

  
  

 

 
        

    
 

 
    

          

    (26) 

For some cosmological constant   whose units are 
 

        . The following constraints can only have one physical 

meaning, they describe events and not particles.  

     
   

                

                  
  

                        
  

                                                      (27) 

 

More profoundly, the meaning of (14) is of an acceleration due to non – geodesic alignment of these events. A 

reasonable interpretation of (13), (14) is that material clocks or as we see in (17), neutral “electromagnetic energy”, 

even with a total charge 0, cannot move along geodesic curves if the events do not align along geodesic curves. In 
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the model in this paper, charge interacts by increasing or decreasing the energy of the weak acceleration field which 

results in force due to 
 

 
      

 

 
      

       
    

 
     . We may have already observed the small 

acceleration (20) as the Flyby Anomaly [19] above thunderstorms. The Flyby anomaly does not support an energy 

density 
    

   
 in which charge induced gravity and charge induced acceleration would cancel out. It does support 

values such as (19). A field that is a sum of events, quite similar to (27) was already offered in 1982 by Sam Vaknin 

[10], later, a more set-theory oriented idea was offered by Sorkin in years 1987 and 2000 [20]. Sam Vaknin’s work 

was published in modern variations by other researchers [21] around 2001 – 2002. The approach in this paper does 

not derive from the Dirac spinor equation [22] as Sam Vaknin’s work and as [21] did. 

 

Unexpected gravity and anti-gravity by electric charge 

From (21) and (24), 
  

 
 

  

    where   is a 4-acceleration representative of the field and      
 . 

  
  

   
 

   

  

 

  
 

   

      
  

  

   

    

 
 and 

    

 
 

    

  
                                     (28) 

as in special relativity but with a very important caveat that    need not be aligned with any motion    as it is 

merely a gradient of a scalar field and not a velocity   , 

    
             

        
                                                                                (28.1) 

Although    is not velocity   , 
    

 
 behaves as 

    

  
 where   is acceleration,  , the speed of light, and we saw 

in (20)               so
    

 
 is as in the non-covariant limit  

   

  

 

  
 where   is charge density and with 

    

 
 

    

  
 and therefore, 

 

   

    

 
 
    

  
 

 

   
 

   

  
 
           

  
                                      (28.2) 

which generates gravity equivalently to energy density. So 

   

   
 

   
 

   

  
                                                    (28.3) 

 That can only mean that 
 

       
                                                                                              (29) 

generates gravity as mass does, however, by the note after (25) the motion of the electric charge need not be aligned 

with    which differs from a usual inertial mass. (29) yields an assessment 

         

       
                                                                              (30) 

 

From (30) and from (20) we can approximate the total acceleration      near a charge   at radius   as, 

      
  

         
 

       

      
               

  

         
 

   

       
  

Term (30) requires an experimental evidence which does exist, see Timir Datta’s research [23] and a Brazilian 

experiment [24]. [23] involves high concentration of separated charge close to a tip of a cone. We do not know yet, 
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whether the positive charge or whether the negative charge act as negative energy, however, evidence of free 

electrons in the galactic center [25] suggests ionization of the galactic center where these electrons move out from 

the galactic center. We therefore expect the edges of a spiral galaxy to be more negative than its center. Equation 

(30) by Miguel Alcubierre [26], inevitably generates Warp Drive between the edges of the galaxy and its center, 

providing that a sufficiently large amounts of electric charge are separated. Since galaxies seem to be stable, the 

Alcubirre Warp Drive must push the galaxies towards the center. We are inevitably led to the conclusion that it is 

the negative charge that generates negative gravity in the peripheral mass of the galaxy, where the center of the 

galaxy is positively charged and generates more gravity than expected. By (30) and [26], static charge separation 

cannot generate a technologically feasible warp drive without dynamic charge oscillation and/or rotation because an 

Alcubierre warp drive requires                Coulombs. The acceleration field around a charge must 

be opposite in sign to the gravity generated by the positive charge and to the anti-gravity generated by the negative 

charge. In the language of modern cosmology, electrons generate “negative pressure” and protons generate 

“pressure” on the neutral clocks they weakly accelerate and cause space-time to respond by gravity. Before we move 

on, it is worth mentioning that the action 
 

 
     can be generalized to more than one Reeb vector. This idea is 

quite straight forward by roots of determinants of Gram matrices of Reeb vectors and is discussed at the end of 

Appendix F. Taking the third root of a determinant of the Gram matrix of three complex Reeb vectors, has an 

      symmetry. There are other ways to consider       symmetry, see Appendix F for the conditions of one 

interesting option. To summarize the idea of an acceleration field that acts on mass in a different way than gravity, if 

   
  

 
  is a unit velocity of a clock in the hyper-plane spanned by 

  

 
 and 

  

  
 then the acceleration 

   

  
  where   

is proper time, is also in that plane and the clock reference fame is accelerated by the rule, 

   

  
     

   

  
         

   
 

     
 

   
 

     
    

Then multiplying both sides by 
  

  
 we get  

   

  

  

    
  

    

     
 

    

     
     

    
      

 
. 

In the same way, assuming    
     yields 

   

  

  

       

  
    

     
 

    

     
     

       

     

  

       

 
. 

So we see that    was transformed into a vector with the pseudo-norm  

       

 
  because, 

    
  

 

  

    
   

  

    

       

 

  

       
 

 

    
  

 

  

    
 

 

    
  

    

  

 
 

 

 
    

  

 
 

Notice that it is possible that 
    

 
   in               convention and  

    

 
   in               

convention . 
 

Particle mass ratios by added or subtracted area – Muon to electron mass ratio 

This section, unlike the previous ones, relies on scaled area ratios. Some of the work can be seen in the remarkable 

paper of Lee C. Loveridge [27] and is somewhat speculative unless (34.4) is taken into account or claims of a ~40eV 

neutrino [28] and of a ~0.0002 eV resonance are taken into account and therefore the reader is honestly advised to 
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take it with a grain of salt especially as this model requires a scaling factor 
 

  
, that can be shown justifiable due to 

fractional quantization in a Hole Quantum Wire and Steiner Tree optimization in Causal Dynamic Triangulation that 

will be discussed, however, the results are very interesting and do have a geometrical basis in [11] that worth further 

investigation -  the Reeb vector on the foliation leaves must have drains and sources. It is therefore the authors 

opinion that the technique used here will be considered by the reader even if the reader does not fully agree with the 

idea which is presented in this section. The following development has its roots in the lectures of professor Seth 

Lloyd of the M.I.T [29] and in a paper by Ted Jacobson [30] combined with equation (24). A method to reduce (24) 

from 4 dimensional Minkowsky space to Riemannian two dimensions will be discussed along with its possible 

applications to mass ratios between particles and to the fine structure constant. Einstein tensor means added or 

subtracted area of the sphere in a ball with an infinitesimally small radius    which is Minkowsky perpendicular to a 

unit vector, 
  

  
, by the equation, 

       
 

 
     

    

 
                        

    

  
 

     

   
    

    
  

  

    
   

      
 

 
     

    

 

 

 
   

     

Where      is the scalar curvature in three dimensions. 

 

 
 

 
      

 

 
     

    

 
  

              , so by (24), in               metric convention, 

 
 

 
  

 

 
      

 

 
      

       
    

 
 

    

 
  

  
 

 
      

 

 
     

    

 
  

       (31)  

      ,    
    

 
  , 

    

 

    

 
   and therefore (31) yields 

  
 

 
    

 

 
   

  
 

 
       

                                                    (32) 

This is not yet the result of contracting the Einstein tensor with a unit vector twice [29], [30] that we want. The 

factor 2 can also be found in the outstanding work of Lee C. Loveridge [27]. We now make an assumption that in 

the subatomic scale, there is a relation between the acceleration    and the radius   , which is presented by 

 
      

 
 

    

 
 

    

  
 

 

  
 where   depends on the field and   is the speed of light, also the divergence is 

calculated along the radius    and we also scale    by 
 

  
 to get 

 

  

 

 
  

 

  
. This scaling is not trivial and it leads 

to some interesting results.  In terms of ordinary Riemannian geometry, the curvature of circle of radius    is 
 

  
. We 

also know that by Gauss law, if area is added around a charge, the intensity of the electric field is reduced and we 

expect the same rational reduction in the acceleration field. If the area grows by    , then the field is reduced by 

 

 
  so, 

 

  
 becomes 

 

   
. Consider that the divergence is calculated along a distance   , which means that there is a 

minimal distance along which the field can change from 
 

   
 to 0. So the divergence term becomes 

  
 

   
   

 

  
  

 

    
,   (32) then yields the following, 
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                                   (33) 

                                                     

We now divide this area by the area of a sphere     
 .  

 

    
 

 

  
  

 

 

  

  
 

 

 
   

  
 

  
  

 

 

  

  
 

 

 
  

     

    
 

  and we also know that   
    

      

    
 

 

from which we infer, 

  
 

  
  

 

 

  

  
 

 

 
       

 

  
  

 

 
                           (34) 

 

Note: The real reason for the  
 

  

 

 
 is because an electromagnetic field of a charged particle can be viewed as 

comprised of two perpendicular components, see (13). An interaction of such a field can be said to be related to the 

Fine Structure constant Alpha. So the fine structure constant should be actually multiplied by the square root of two 

in order to relate to an interaction with two perpendicular components of unit length. The following is the outcome 

of such a consideration: 

 

        
           

 

                                          (34.1) 

The nearest integer less than that value is: 

 
 

        
                                                                       (34.2) 

 

Now if we look at the following relation between the inverse of  the Fine Structure Constant and the number 96: 

Then we see that it is not difficult to reach these two equations if we notice that 

   
 

 
             ,     

 

 
              for the    

choice                                                       (34.2.1) 

This also explains the motivation for the choice of 96 as an upper limit of power. The idea behind   
 

 
 is that 

it expresses an increase in area ratio  by  
 

 
.  2 means that the initial energy is doubled. These two numbers 95, 96 

will be used to derive the mass ratio between the Muon and the electron. The idea of using powers will lead us to 

a derivation of the inverse Fine Structure Constant around 137.035999035747181551 but that can wait 

for now. 

 The reader may come to the conclusion that the author first threw a dart and then drew a circle around it and it has 

to be admitted to be somewhat true. The value 
 

  
 was indeed intended due to (34.2) which is also a result of the 

interpretation of (13) as two perpendicular acceleration fields as the reason for the energy of the electric field. 

Note: The easy way to get 
 

  
 though not intuitive either, is to divide the area loss from a disk perpendicular to    

which is 
 

  

 

 
  

 

 
   

  
 

 
       

  by the area of a sphere     
  so we have  
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                              (34.3) 

Intuitively, we would expect 
             

                     
 to have a physical meaning when reducing a 4 

dimensional Minkowsky geometry to a 2 dimensional Riemannian geometry. 

 

The most surprising argument for 1/96 comes from a simple geometric consideration. Due to (34) consider the 

following, where   
 

 
 will be discusses. 

  
  

 

 
  

 

 
 
 

 
 
 

 
 

 
      

    
  

 

 
  

 

 
 
 

 
 
 

 
 

 
      

  

Now, look for the following minimum for a natural n: 

                   
 

 

    
  

 
                                       (34.4) 

For n=95 we get ~0.015965593, for n=96, 0.003727368 and for n=97, 0.023393663. In plain English, n=96 

minimizes the delta between the residual               
 

 

    and the angle 
  

 
. For n = 96 where      

         
 

 

             . These calculations where done, using Excel Datasheet and the reader may 

prefer Python or C,C++. By professor Ted Jacobson [30], area in the Planck scale is equivalent to energy and 

therefore if his claims are correct, we should be able to obtain known mass ratios between charged particles, based 

on area ratios, so 
      

      which is     should represent at least one of the known mass ratios in the particles 

world. The problem here is that we do not have a full solution to either (24) or (26) and we honestly have to make an 

educated guess about possible values of    and get different     values as mass ratios. We do that by using the 

coefficient of a normalized ring potential which is reminded in the notebook of Ettore Majorana [31] as      
 

 

 

 
. A phenomenological view of the electron as a ring can be seen in the work of O.F. Schilling [32]. Our most 

obvious first target is the Muon / Electron mass ratio as nominated to have a gravitational reason. Instead of 

accepting   
 

 
 as factual, we can also say that due to the spin of the electron, the acceleration field around the 

electron is not evenly distributed, to compensate for that, at any given time,   has to be bigger than 1, otherwise 

Gauss law would be violated. One simple model is of a field which is maximal at an equator of some sphere around 

the electron and vanishes at its poles. “Equator” means some maximal length circle in which the radius is typically 

perpendicular to an axis of rotation.  Such a model yields the following value, 
   

            
 

  
                                                 (35) 

Unlike in (35) a uniform field around a negative charge at a given local time would look as in the followings 

illustration that represents 3 dimensions, where the dark arrow illustrates an acceleration of a material clock in the 

electric field. We can also imagine a neutral particle as if having an alternating field pointing in and out of the 

particle rather than                . 
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(Fig. 1.0)    -                   . 

 

 
 

where   is the angle from the “equator” and             is the absolute value of a Minkowsky norm of an 

acceleration   .  Field integration on two hemispheres is then, 

  
 

  
                        

  
 

 
   

 

     
         

 
   

  
 

 
   

      
  

 

 
       

 
 
   

  
 

 

      
 

 

                               (36) 

If the field was uniform then the integration would be 

  
 

 
                 

  
 

 
   

                                            (37) 

 

And the ratio between (37) and (36) is 
 

 
, which agrees with Ettore Majorana’s normalized ring potential coefficient 

[31] as      
 

 

 

 
, which means that the field 

 

  
 in (36) has to grow by a factor of  

 

 
 in order to sum up as in 

(37). In the charged particle case, we can see    as a vector that points toward or outward of an integral curve in 

space-time but that the Minkowsky norm of the field is always the same, only the probability that this vector points 

towards a certain direction in space-time changes. This idea leads to the compensating scaling value   
 

 
. So 

equation (34) around a negative charge becomes, 

 

   
 

  
  

 

 
 

 

 
 
 
 

 

 
     

                                                            (38) 

The roots of (38) are x1~=1.004836728026,  x2~=0.760783659050,  x3=0.089280264357. The first root is the only 

root which is attainable through iterations          
           

 

 
      

 

 
 
 
 

   
 

 

 

 and it converges 

starting from 0.1 or from 2 or any other positive number. 
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But     
                        

    , is either bigger or smaller than 1. The ratio 

    

                        
 

 

   
           , which is very close to the ratio between the mass of the 

Muon and the mass of the Electron, 206.768277. We followed the M.I.T professor Seth Lloyd offer that addition or 

subtraction of quantum area, means addition or subtraction of energy and we have reached            . For the 

solution around a positive charge 

    
 

  
  

 

 
 

 

 
 
 
 

 

 
     

                   (39) 

 

we get about  44.63955017596401 . These ratios ~1/45 and ~1/207 could mean a decay path for charged leptons 

where the numerical stability of 1/45 is worse than that of 1/207. A more exact root to (38) yields, 

 
    

  
 

 

   
                          (40) 

The difference in accuracy in this value by 64 and 128 bits is just the last 2  -  3 digits. If we divide the Muon energy 

by this value, we get very close to the energy of the electron and the delta in Mega electron volts is: 105.658374524 

MeV / 206.75133988502202 – 0.510998946131 (MeV) = 0.00004187509298 MeV, which is 41.875092980 eV and 

surprisingly fits the Super Nova 1987a ~40 eV Neutrino claim by Cesare Bacci [28]. That energy is small but 

beyond the energy of any known Neutrino mass. It is an unknown energy. Should it be a new particle, this particle is 

beyond the Standard Model. The ratio between the electron’s energy and this energy 41.875092980 eV is 

0.510998946131 MeV / 0.00004187509298 which is approximately, 12202.93281199539440, almost 12203.  For 

Muon energy 105.6583745 MeV and an electron energy 0.5109989461 MeV, the ratio is 12202.95760492718728 . 

We can get this value if we check the following polynomials for      
 

  
 , see (34): 

    
 

  
  

 

 
   

 

  
 

 

    
 

  
       (41) 

Which is 1 + or 1- the portion of area added around a negative charge or subtracted around a positive charge such 

that the acceleration field is smaller by a factor of       
 

  
 . The idea to use a damping of    

 

  
  is 

because of the factor  
 

  
 in (34). This implies that charge quanta can be of the order 

 

  
 of the charge of the electron 

e. The compelling indirect evidence for the 
 

  
 in (43) can be seen in [33] as it appears that a fractional quantization 

in a Hole Quantum Wire yields a lowest fraction 
 

  
 and with the direct 

 

 
 fraction from Quarks we get 

 

  
 

 

    
 

which explains 
 

  
 as the coefficient of electric charge. In resemblance to (38), the two polynomials in (41) with the 

   sign have 3 roots each and the big roots are x1=1.00520707510980 for (+Area) and x2=0.98426221868924 for (-

Area). 

  
 

    
  

 

    
                       (42) 

which with numerical accuracy is even closer to 12202.95760492718728. Other choices except for 96 in      
 

  
  are further away from 12202.95760492718728 even for small differences after 3 digits after the floating point. 

The number   
 

  
 

  

  
  

  

  
 
  

 is the inverse of the Steiner Tree Problem limit. Finding as sub-optimum 

below 
  

  
 of the minimal length of the Steiner Tree [34] that spans a graph with terminal points – in our case on a 
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sphere - is not solvable in polynomial time. This limit strongly suggests a Dynamic Causal Triangulation [18] 

approach to space-time in (41), i.e. it describes a field truly in the Planck scale. We have to compromise on a graph 

that its length fits a larger ball by a factor 
  

  
, which means that an acceleration field that depends on 

 

  
 will be 

smaller, 
  

  

 

  
. Recalling (39), (40),   

 

  
  

 

 
 

 

 
 
 

    
 

 
      . So the following system of biggest 

roots as area ratios is 

  
 

  
  

 

 
   

 

  
         

 

  
        

  
 

  
  

 

 
   

 

  
         

 

  
        

  
 

  
  

 

 
 
 

 
 

 

    
 

 
       

                                                  

         
     

              
                  (43) 

 

which is ~ 0.51099894597978 MeV instead of 0.510998946131 MeV.  The difference -0.00015122 eV may be 

related to the electron neutrino. The minus sign means this energy is required in addition to the gravitational energy 

of the Muon in order to create an electron. A Muon mass of 105.65837455 yields an electron mass 0.5109989461 

MeV. In Seth Lloyd’s and Ted Jacobson’s terminology, the physical meaning of this finding could be that the 

energy of the electron is the gravitational energy of a small surface around the Muon. The code in Python that was 

used to calculate the result of (43) can be found in Appendix G. To summarize, the factor 
 

 
 is possibly due to a field 

distribution, also see [31] and 
  

  
 is possibly due to Causal Sets [18] and the Steiner Tree Problem [34]. 

If we choose the 
 

   
 44.63955018 solution, we get in (43) a positive charge of 2.366728973 MeV. This is an 

interesting result about the Up Quark energy as assessed in lattice QCD, 2.36(24) Mev [35] but the charge of an 

anti-Muon does not match the Up Quark electric charge which could dismiss this option. This fact is used as self 

criticism on (43). Another research direction is indirect mass ratios, for example, between particle masses and 

masses from which other particles are derived. For example         
              

     
    

 

           
  

                                             This energy, about 4.717 GeV ~ 4.72 GeV 

[36],[37] appears in QCD as the pole energy of the Bottom Quark and is above the Bottom Quark energy of 4.18 

GeV. It is worth mentioning that if we divide the energy of the Muon by 12202.88874066467724, see (42), we get 

about 8.658472331 KeV which complies with excess of photons with such energy in galactic centers [38]. Another 

remark is that the energy of the Tauon 1776.82 MeV or 1776.86 MeV divided by 12202.88874066467724 yields 

about 145.60650 MeV. This value is within one of the spectral lines of the decay of 99Mo and is used among other 

lines in nuclear medical imaging. Surprisingly, the sharpest image of lymph nodes in the human body can be seen at 

145.6 MeV [39], which means that least scattering of photons occurs at that energy. This phenomenon could have a 

conventional explanation but it could also indicate the conversion of some of these photons into a neutral particle. 

Another interesting energy is:                          which is about 4625.8194587 eV. 
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Refuting a “speculation” claim attack – mathematical coincidence analysis 

Assessment of such an attack must be based on probability as dependent on relative error,   
             

             
 

                     
             

             
   

 
                                         

                    
  

 
 

                                    
 

                             

            
 

 

                             
, where a Muon energy of 105.6583745 MeV and an electron energy of 

0.5109989461 MeV were considered. 

This result means less than 5/10,000,000,000 relative error! Before trying   
  

  
 the author tried    . So we 

can say the probability grows to 1/1,000,000,000 but even 1/10,000,000 is already considered a finding. The 

significance of   
  

  
 is of 4 digits and more after the floating point! For example,   

 

 
        in the 

calculation of      in (43) yields 0.5110… MeV and   
 

 
        yields 0.510969… both further away 

from the result 0.51099894597978 MeV. 4 digits sensitivity after the point can be seen in the calculation of    

            in (43) too,   
  

  
        yields 0.51099894008... and   

  

  
        yields 

0.5109989518… both further away from the result 0.51099894597978 MeV. These numerical sensitivities highly 

disfavor a “speculation” claim attack. The following shows how significant is the choice   
  

  
   

 

  
. We 

did not refer to annihilation of two Muons. As one quantum system of two entangled particles a Muon and an anti 

Muon, before annihilation, should be seen as one energy with zero charge. Then (34) turns into 

   
 

  
  

 

 
               

 

  
  

 

 
                                          (43.1) 

This equation yields a biggest root smaller than 1. The question we may ask, due to   
  

  
  in (43), is: Is there a 

reasonable     
 

 
 for which 

 

   
            which is the Muon / Electron mass ratio. The closest fit 

is 

  
  

  
    

 

  
  

 

 
 
  

  
 
 

     
 

   
                                         (43.2) 

  
 

 
   

 

   
  

  , e=2.71828… and for    
  

   
 

   
                 . The approximation of 

 
  

   is    
 

 
 

 

  
 for which the closest 

 

   
  to 206.768277  is achieved when     . This leads to   

   
 

 
 

 

  
    

 

  
 
 

 and (43.1) becomes 
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                                           (43.3) 

The Muon mass is divided to yield the delta     
                

        
                    

            . Other results are for,  
  

  
 , 207.044017583727…, for    

  

  
 
 

, 206.854768046788…, for 

   
   

   
 
 

, 206.716421179322… and for e^(-1/24), 206.670967462857… 

 

The relative error  
                                

               
                  along with the 

                           error is of extremely low probability of being a result of pure mathematical 

coincidence. Empirically, it is interesting to know if the energies 41.875092980 eV, -0.00015122 eV and 2 * 15 eV 

have a meaning as neutrino energies. 0.00015122 eV ~ 0.0002 eV is likely to be the electron neutrino mass. 

 

Failed research direction - The Higgs Boson 

Consider an electrically neutral particle and Figure 1, where    can, at any given time, point inward or outward in 

equal probability. Then a gravitational source of this particle’s energy   can be interpreted from two polynomials 

  
 

  
  

 

 
    

  
    

       and   
 

  
  

 

 
    

  
    

       and the area addition ratio 

around some negative charge       and area loss ratio around some positive charge     . Then we can 

calculate two energies,     
 

    
 and    

 

    
 where the negative sign stands for anti-gravity. Recall our 

choice of    
 

 
 , 

      
 

    
 

 

    
                                      (43.4) 

                         

When the energy of the Higgs Boson, ~125090 MeV is divided by 251.390890060986031074 we get, 

~497.5916190 MeV which is barely within the assessment 497.611±0.013 MeV [40] of the three known light 

neutral Kaons. This result is a total surprise and if true, there must be anomalies related to the neutral Kaons beyond 

the Standard Model, however, the uncertainty of the energy in [40] is yet too high to draw conclusions. If it was true 

then the Higgs boson mass would be dictated by the neutral Kaon mass and we know that the opposite is true 

The W+ Boson and the Z Boson, the Higgs Boson and the anti-Tau particle 

The equation   
 

  
  

 

 
 

 

 
 
 

    
 

 
       does not take into account the possibility of a null 

Reeb field    
 =0 or in the complex case    

     
  

   . In that case the equation becomes 

  
 

  
  

 

 
       

   

   
                                                              (43.5) 

And  
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                                                              (43.6) 

 

And the biggest roots of these equations are 

   
     

 

  
 

 
 

 
            ,    

     
 

  
 

 
 

 
           and 

   
     

  

     
 

 
 

 
              ,    

     
  

     
 

 
 

 
 

  

  
   and 

 

 
 

    
           

 

    
               

 

             
                     (43.7) 

 

    
               

 

    
       

 

             
            , 

 

             

             
              

 

That number is very close to the mass ratio between the Z boson and the W boson,  
           

          
 1.134597487 

but the error is too big to rule out mathematical coincidence:         
           

                       
 ~4814.16455 and with another W Boson assessment 

           

          
 

            we get                     . It is interesting, but insufficient to rule out mathematical 

coincidence. Nevertheless, (43.7) means that the coefficient 
  

  
 is related to charge-less particles and 

 

 
 to electrically 

charged particles. Similar to (43), if we multiply,                              

            then the relative error for 
           

          
 1.134597487 is about 1/31486.95424, i.e.  

                 
            

            
 
   

                                  (43.7.1) 

and for W Boson of             the error is about 1/1528961.689, however, in (43) it made sense 

due to the electron neutrino or another type of neutrino. In this case, this                  calibration 

requires a more comprehensible theory and is therefore in tension with the assumption of a W boson energy of 

80.3725 GeV. 

 

The Higgs Boson 

A slightly different Higgs energy of 125.35 GeV yields a very interesting result with   
 

             
 

           .                                            . Divide this value by the mass of 

the neutron, 
          

                
                            this becomes interesting because the 
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mass ratio between the Higgs Boson and the Z Boson is about, 
          

           
  1.372774368. If we check the 

relative error we get         
           

                       
 1675.230712. That is a low error. Not enough 

yet to rule out mathematical coincidence but indeed low. The energy                 could be an indication of 

a new Boson or a vector Boson of about 1.29 GeV but not an isovector resonance [41] and evidence for its 

existence should be searched for in particle accelerators.  Another research direction was to use the inverted value of 

  
 

 
, i.e.   

 

 
 in the negative and positive charge area ratio equations. That yields two new maximal roots 

  
  

 

  
  

 

 
 
 

 
 
 
 

 

 
      

 
 and    

  
 

  
  

 

 
 

 

 
 
 
 

 

 
      

 
 along with the 

older ones   
  

 

  
  

 

 
 

 

 
 
 
 

 

 
      

 
 and    

  
 

  
  

 

 
 

 

 
 
 
 

 

 
      

 
. 

Quite like the ratio in (43.7), we have, 
             

             
  

                         

                         
 1.374383282 

which is close to the following mass ratio between a Higgs Boson of 125.3267 GeV and a Z Boson of 91.1876 GeV 

which yields, 1.37438314, close to 1.374383282. It is interesting though not sufficiently accurate to draw any 

conclusion at this stage. The idea behind using charge equations without null Reeb vectors is because the Higgs 

boson is supposedly responsible for non zero mass. From (43.9) and using s instead of b,               

              and  91.1876 GeV * 
             

             
      

 
            

125.3487702 GeV. A similar      
 

           value was used in (43.7.1). 

 

The Tau Lepton 

What doesn’t seem right is the use of null Reeb vectors, which may not be even possible in order to reach a relation 

between particles that have rest mass, W and Z bosons. In this manner if we multiply the W boson mass by 

             
 

  and the Z boson mass by              
 

  we get almost the same value, 

about 9.26 GeV. Unfortunately there is no such boson and thus, this is a spurious prediction. The value 

            gives us some hope to find other particles from the W and Z boson masses from the ratios in (43.7). 

The geometric average of these values is 
 

             
            and the ordinary average 

                 

 
          . Do these values have a physical meaning ? They could have if the Anti-Tau 

particle can be derived from the gravitational energy of the W Boson. Now returning to   
 

  
  

 

 
 

 

 
 
 

    

 

 
       and to 

 

   
           after (43), this portion from the energy of the W+ Boson [42] 

yields,  
         

          
                 . The delta between this value and the Anti-Tau energy 

1776.86 MeV is ~23.5613681 MeV. A higher delta is obtained if the Tau energy is taken to be, 1776.82 

MeV, ~23.6013681 MeV. From (43.7) we can see that 
       

          
                which means 
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that a good approximation of the mass of the Tau particle can be obtained from               

             

 
              

               
              or  

              

  
 

                 

                (43.8) 

And with a more accurate Python code and 80369 MeV W+ Boson we get 1776.82684328632649 MeV and with a 

W Boson of 80372.88 MeV the Tau energy would be            .  
There are two big problems unfortunately, first, (43.8) cannot be true because a null Reeb vector would imply that 

the portion of energy 23.5613681 MeV would not have rest mass. If it is a new type of neutrino, then this particle 

must have rest mass. Second, the averaging in the denominator of (43.7),(43.8) also implies a zero charge oscillating 

field. The W+ Boson has a rest mass and is not a composite particle and therefore the 23.5613681 MeV cannot be a 

part of the W+ Boson. Also, the W+ Boson has rest mass which immediately invalidates any claim that it is related 

to a null Reeb vector. These considerations unfortunately invalidate the feasibility of (43.5), (43.6), (43.7) as a valid 

theory without any modification. Weak evidence for (43.7) can be [43]. 

Other values for     
 

  
 

  

  
 in the null Reeb vector equations, from which 

                                                               (43.9) 

This portion from the Z boson, 
           

            
               , is close to the neutron energy, 

939.5654133 MeV.  939.5654133 MeV  * 96.9950557... yields ~91.1331996 GeV which can be viewed as a an 

intermediate value Z’ which is smaller than the energy of the Z boson 91.1876 GeV. (43.9) offers a different process 

than (43.4), by which mass ratios of neutral particles can be obtained. The Z’ intermediate vector boson energy of  

91.133 GeV can be found in [44]. (43.9) is problematic because it requires the use of null Reeb vectors which would 

imply in this case, that a large portion of the Z boson should be mass-less. Obviously this is not true and that is why 

(43.9) is not considered as a feasible theory. If it was true then the Z’ energy and therefore the Z boson energy 

would be dictated by the neutron’s mass.  Nevertheless, a researcher’s integrity obliges to account for not only 

successes but also for directions that turned out to be wrong. 

 

The Tauon and the Muon mass ratio 

 

The denominator                 in (43.8) and                in (43) can be used together 

to yield a nice result that seems to be more than just a mathematical coincidence. 

Consider the following: 

  
 

  
  

 

 
    

  
    

       

  
 

  
  

 

 
    

  
    

       

Such that        
 

  
 

 
      

                                    (43.10) 

With biggest roots    1.003629541 and    0.969877163. 

A calculation that uses an electronic datasheet yields, 

                           
 

                                 (43.11) 
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which is close to the known mass ratio between the Tauon and the Muon,  16.817. Multiplying this value by 

                from (43.8) and dividing by                from (43) yields, 

        
 

  
                 

              
 

                         

                    
                       (43.12) 

Which is  16.81752914. So this calculation predicts a Tauon energy of about 1776.9127923826 MeV from the 

Muon energy. There are some major caveats before getting excited about this result. Unlike (38), (43) in which 

  
 

 
 came directly from Ettore Majorana’s notebook [31],                    does not seem to have a 

straightforward geometric meaning. A second caveat is that                     is not based on any accurate 

measurement of the Tau particle’s energy 1776.91 [45] and is most likely wrong! This assessment is indeed 

interesting, but it is not as nearly as  neat and as accurate as (43). From the [45] Tauon energy result, a prediction of 

the W and Z masses yields: Tauon energy, 1776.9127923825637936 MeV, W energy, 80372.8876286350568989 

MeV, Z energy, 91187.9801482948387275 MeV from   1.5561985371903484 and a more accurate ratio than 

(43.7.1), 1.1345614527330559.  The most remarkable property of the value              in (43.11) is the 

following property,   
 

 
    

 

   16.55337088 which means that this expression approximates the value 

            from (43.11). Even more interesting is another property,   
 

 
      137.0070438 which is close 

to the inverse of the Fine Structure Constant, 137.035999046. We will see more about this relation in the following 

section. 

 

An unexpected relation to the inverse of the Fine Structure Constant 

If we check the following with the same   from (43.11), we get, 

 

      
 

 

                       
                                 (43.13) 

we may think that perhaps scaling of the value of    in a rational way, will yield the exact inverse Fine Structure 

Constant. So we want to find some d such that 

 

                          
 

 
  

  will yield the constant we are looking for. We will soon find such d, 

           that complies with [46] and we get,  
 

                          
 

        
  

 

                    . 

Until now, that is not very interesting because we could not find d out of any new theory. Well, not very accurate. 

First, 
 

 
      

                                    and  
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 If we test the following values for            we get: 
   

 
                    , 

   

 
                   

and the geometric average of these two values is  
   

 

   

 
 

 

 
  

      

 
              so we may try 

our luck with each one of the following equations: 

 

         
 

 
  

 
      

 
   or   

 

          
  

  
 
  

 
  

 
   

 
                      (43.14) 

The idea to use 95 and 96 is from (41),    
 

  
 

  

  
. This idea does not lead to the exact inverse Fine 

Structure Constant but very close to it, 137.035977125551937661 with some numerical error,  

      

 
 

 

         
 

 
  

                                          (43.15) 

Each one of the two equations of (43.14) yields, 

 

         
 

 
  

                                                          (43.16) 

 

An exact Inverse Fine Structure Constant 

The exact Fine Structure Constant was found by the following, although some aspects of the following calculation 

are not resolved yet. We put together (38), (39), (43.10), (43.11), (43.13),  

 

 
      

                          ,  

  
 

  
  

 

 
 
 

 
 

 

    
 

 
       

  
 

  
  

 

 
 
 

 
 

 

    
 

 
       

   
 

 
      

   
 

                                  

 

                          
 

 
  

                                     (43.17) 

A more exact term in (43.17)                            when multiplied by (1-

 

                    
   yields                           

 

                    
  

  

 

                                   . Now recall that 
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             . So the previous calculation represents the error in d in an elegant expression that is easy to 

remember. 

Another result is by finding the variable s where a and b are given in (43.17): 

 
       

 
 
            

 
 

         
 

 
 

 
            

 
  

                                (43.17.1) 

 
       

 
 

            

                        

Another idea is to solve the following equation where s is given and p is a variable: 

   
 

 
      

                              

 
       

 
 
         

 
 

         
 

 
 

 
         

 
  

                                (43.17.2) 

 
       

 
 

         

                          

                       

Combining  (43.17.1) and (43.17.2) we find a numerical attractor at (43.17.2) with 

                                 
 

 
      

     
 

 

         
 
 

                         , which is surprising. For (43.17) – (43.17.2) see Appendix I. 

 

Tauon to Muon mathematical coincidence analysis 

With   1.5561985371903484 - 0.001, from (43.11), the Tau energy is 1775.5044808249303969 MeV and with 

  1.5561985371903484 + 0.001 the Tau energy is 1778.3270829769808188 MeV. The sensitivity to a delta 

0.0001 is   1.5561985371903484 - 0.0001, Tau energy 1776.7716927033129650 MeV and 

  1.5561985371903484 + 0.0001, Tau energy 1777.0539518519776720 MeV. So for an energy of around 1776.9 

MeV or even 1776.86 MeV, a speculation claim attack is disfavored. 
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Particle mass ratios by added or subtracted area –  Approximation of the Fine Structure constant 

Like the previous section, this section relies on area ratios to represent mass ratios. Unlike (43.17.2) it is brought 

here for showing another possible approximation of the inverse Fine Structure Constant but not as the process that 

yields that constant. Some of the work can be seen in the remarkable work of Lee C. Loveridge [27] and is 

somewhat speculative unless (34.4) or claims of a ~40eV neutrino [28] and other quantum effects [33] are taken into 

account and therefore the reader is honestly advised to take it with a grain of salt, however, the results are very 

interesting and do have geometrical basis in [11] that worth further investigation - the Reeb vector on the foliation 

leaves must have drains and sources. It is therefore the authors opinion that the technique used here will be 

considered by the reader even if the reader does not fully agree with the idea which is presented in this section. An 

approximation to the Fine Structure constant was discovered totally by chance when the author calculated the 

geometric average of area ratios quite similar to the square root of ones that appear in the denominator of (43). i.e. 

given two polynomials,   
 

  
  

 

 
              and   

 

  
  

 

 
             , then we 

are interested in exploring            . The question that was explored was, if   is the inverse of the 

average distance between two points on a sphere S2 then what is              ? This question is hard to 

solve because in (31) and in (32), we were not interested in the geometry within the infinitesimal sphere S2 but only 

in area deviations from the surface area     
 

, while ignoring the interior of the sphere, which is a three 

dimensional ball. The greater problem is that in the calculation of the inverse of the average distance,   is dependent 

upon   in the solution of   
 

  
  

 

 
              because if the area      becomes       for 

every radius      then the average distance between two points on the sphere, depends on   . We must therefore 

calculate        for some function     . In flat geometry, the Riemannian distance between two points on the 

sphere that have an angle   with the center is 

               
  

 
      (44) 

 

Integrating on the sphere and dividing by the area, we get the average distance in flat geometry, 

  
 

    
                    

 

 
 

 

 
                               (45) 

So if the acceleration field depends on the inverse of that distance, it will depend on 
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. Plugging this 

value in (34) and calculating the biggest roots     of the two resulting polynomials, 

  
 

     

 

     
 
   

              (46) 

Close to 137.035999173 which is the inverse of the fine structure constant but not good enough. 

For the sake of simplicity, we assume     .  We need to take into account the effect of dilation and contraction 

of areas around the electric charge in order to get a closer value. A Riemannian geodesic curve distance      in 

(44) is replaced by 

                        
  

  
     

   

   
                                            (47) 

With boundary conditions              ,     , such that   is the biggest root of one of the two 

polynomials (34),     
                             

                    
,      or     and    .                is 

the square length element in a direction perpendicular to the radius  . This is the infinitesimal distance component 
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that is influenced by the ball surface dilation at radius   .     is the infinitesimal square distance component along 

the radius and is therefore not influenced by surface dilation or contraction by  .  The simplest model in which the 

area dilation is   at radius    and 1 in the center, which means the curvature is 0 at the center, is          

        so                          . See Fig. 2.0 

(Fig. 2.0) – The reduced 3 dimensional curvature, from Minkowsky 4D to Riemann 3D around a hollowed positive 

charge whose field depends on average distance between two points on the sphere.

 
(47) becomes, 
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Then (45) becomes, 
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(48) and (49) turned out to be extremely difficult to calculate. The author had to compromise on accuracy, and chose 

integration along a straight line in the coordinate system as a compromised approximation of (48) but with a 

systematic error. The term        
 

 
  

                       

       
  

  
 

 
   

   is reduced to       
  

 
   as in (44), with 

      if          for all      . So as an approximation with a systematic error we have, 
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and instead of the exact (49) we use, 
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We are now ready to run a computer calculation in C++, with a small systematic error, which is very slow but at 

least works, 
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                                                (53) 

And the approximated      yields a good result despite the systematic error in (50),(51), instead of using the exact 

terms (48),(49). 
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The code that was used to calculate (53) was written in C++ and can be found in Appendix H. Integral (50) is further 

developed in order to avoid the use of time consuming functions. 

 

Conclusion 

Using time-like curves which are based on Morse functions, it is possible to describe fields of acceleration that are 

not predicted by the metric alone. The acceleration fields have a rigid mathematical foundation in the wok of 

Georges Reeb from 1948 and in the theory of foliations. It is possible to say that space-time codim-1 foliations 

represent geometric information that is not represented by the metric tensor alone. Although a lot of work has to be 

done in order to show how to reconstruct the results of Quantum Field Theory, the results of this paper should raise 

a new interest in this work which cannot progress further as a work of one man. Unexpected gravity by electric 

charge has an immense importance to the development of the human race and it is especially important in order to 

understand the Dark Matter effect and in order to develop feasible Alcubierre  - White or Alcubierre Froning Warp 

Drive technology. At least part of the Dark Matter effect may not be due to Dark Particles. 
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Appendix A: Euler Lagrange minimum action equations 

We assume  8  (from the previously discussed term, Kaa 
 8/  as an energy density).  
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The variation of the Ricci scalar is well known. It uses the Platini identity and Stokes theorem to calculate the 

variation of the Ricci curvature and reaches the Einstein tensor [47], as follows, 
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The following Euler Lagrange equations have to hold, 
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The reader may skip the following equations up to equation (61). Equations (61), (62) and (63) are however crucial. 
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We subtract (56) from (57) 
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R  is the Ricci tensor and 
 RgR

2

1
  is the Einstein tensor [47]. In general, by (28) and  8 , (61) can be 

written in               metric convention, so          as, 
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Appendix B: Proof of conservation 

Theorem: Conservation law of the real Reeb vector. 

From the vanishing of the divergence of Einstein tensor and (62) in the paper, we have to prove the following in 

              metric convention : 
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Proof: 

From the zero variation by the scalar time field (63) 
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Returning to the theorem we have to prove and using equation (68), we have to show, 
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Notice that 
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Equation (70) is also a result of                               and of                    . 
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and we are done. 
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Appendix C: Invariance of the Reeb vector under different functions of P 

Here we wish to explore another degree of freedom in the action operator of the “acceleration field” which results 

from the Reeb vector, as shown by a representative vector field 
idx

dP
 which is tangent to a non-geodesic integral 

curve. We wish to show that P  can be replaced with a smooth function )(Pf  and that 
mU  is invariant under such 

a transformation. We revisit our acceleration field and write    
    

   
       

     s.t.      
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Appendix D: The curvature of the gradient of P 

The second power of the curvature of the integral curve by    
  

    where    denote the coordinates is expressible 

by 

 g
PP
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dt
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d
Curv

k
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k
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2

                                                  (73) 

such that 
g  is the metric tensor.  (73) is an excellent candidate for an action operator. For convenience, we will 

write 
k

k PPNorm   and  
 P

dt

d
P   . For the arc length parameter t . Here  is the main trick, as was mentioned 

about 2NormZ  , Normmay not be constant because P  is not the 4-velocity of any particle, (to see an 

example of a variable Norm, see Appendix E  – The time field in the Schwarzschild solution),  An arc length 

parameterization along these curves is equivalent to proper time measured by a particle that moves along the curves, 

and in the real numbers case, P can be indeed time. Unlike velocity’s squared norms, Z  is not constant. 

Let 
W   denote: 



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Obviously  



34 
 

0
3


Norm

gPP

Norm

gPP
gPP

Norm

gPP

Norm

gPP
gPW

k

k

k

kk

k

s

s

k

kk

k





















 

Thus 

2

2242

2 )(
Norm

PP

Norm

PP
gPP

Norm

gPP

Norm

gPP
WWCurv k

k

s

s





















  

 

Following the curves formed by 
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In the real case, we have achieved the Reeb vector, 
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and our candidate for a trajectory curvature action is 

 

m

mUUAction
4

1
   where in the complex case we saw    
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 (75) 

Non-geodesic motion, as a result of interaction with a field, is not a geodesic motion in a gravitational field, i.e. it is 

not free fall.  Moreover, material fields by this interpretation prohibit geodesic motion curves of particles moving at 

speeds less than the speed of light and by this, reduce the measurement of proper time. 

 

Appendix E – Time-like field from geodesic curves in the Schwarzschild solution 

Motivation: To show a non vanishing     
     , to make the reader familiar with the idea of maximal proper time 

from a sub-manifold and to calculate the background scalar time field of the Schwarzschild solution from that sub-

manifold. We choose as a sub-manifold, a small 3 dimensional 3-spehere around the “Big Bang” singularity or a 

synchronized big sphere around the gravity source and far from the source and therefore this example is either 

limited to a “Big Bang” manifold or to a big sphere. So, we want to connect each event in a Schwarzschild solution 

to a primordial sub-manifold a fraction of second after the presumed “Big Bang” or to a synchronized big sphere 

around the gravity source, with the longest possible curve under the assumption that no closed time-like curves 

occur.  

In this limited case, the scalar field is uninteresting as it does not represent interactions with any charged particle or 

with other force fields and therefore, the Reeb vector should be zero. 
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We would like to calculate )
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Schwarzschild coordinates for a freely falling particle. This theory predicts that where there is no matter, the result 

must be zero. The speed of a falling particle from very far away, as measured by an observer in the gravitational 

field is 
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Where  is the Schwarzschild radius. If speed is normalized in relation to the speed of light then 
c

U
V  . For a 

far observer, the deltas are denoted by and, 
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which results in, 
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Here is not a tensor index and it denotes derivative by ! 
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Here, is not a tensor index and it denotes derivative by  ! 

For the square norms of gradients, we use the inverse of the metric tensor,  
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 And we can calculate 
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We continue to calculate 
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Note that here is not a tensor index and it denotes derivative by  ! 
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Please note, here is not a tensor index and it denotes derivative by  ! 
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So 
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And finally, from (81) and (85) we have, 
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 (86) 

which shows that indeed the gradient of time measured, by a falling particle until it hits an event in the gravitational 

field, has zero curvature as expected. 

 

 

 

 

Appendix F:  Conditions for SU(3) symmetry by three complex scalars in the kernel of    

We may want to express the acceleration matrix  A  by three scalar fields that are defined in the foliation F that is 

perpendicular to 
Z

Pi
. This is because iP  is a geometric object that defines foliations of space-time and can be 

conversely defined by the foliations. Another motivation is to show that )3(SU  that is seen in Quantum Chromo-

Dynamics, may originate from geometry. By a theorem of Frobenius, necessary conditions for 3 vectors 

)3,2,1( jh to span the foliation F is that the vectors )(sh are Holonomic if their Lie brackets depend on them 





3

1

)()](),([
j

j jhckhih  for some coefficients jc . The Lie brackets of each two vectors must depend on the 

vectors that span )(FT . We may write our 3 scalars cba ,,  (here c  is not the speed of light and not the previous 

coefficients but a scalar field) and their gradients that span the foliation’s tangent space )(FT as follows, 

c
dx

d
hb

dx

d
ha

dx

d
h

kkkkkk  )3( , )2( , )1( . 

We now express 
 A  by )1(kh , )2(kh , )3(kh in a covariant formalism but we need some constraint on P . 

Condition:





 PPPP ;**;   

This condition is not trivial and in general, 





 PPPP ;**;  . 

Consider the following matrix: 

 jijijijiji ccbbaagD ***  
 (87) 

and 

2/)**( 



 




 i

ia  for some scalar function   whose gradient i  is in the foliation 

perpendicular to P  etc. and in the same manner replace i by a normalized unit vector ib and i by a normalized 
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orthogonal fields that span the tangent space of the perpendicular foliation to 
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Now comes a little trick: 
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By (10), it is obvious that the first two terms constitute minus twice the Reeb vector, 
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 (89) 

Consider our assumption, jijijijiji ccbbaagD ***    and we have obtained an expression of the Reeb 

vector by the orthonormal vectors that represent the foliation. The additives of (87) are tensors. This leads us to an 

open question as follows: Is the condition 





 PPPP ;**;  , the minimal condition which is needed for a 

representation of the Reeb vector by jjj cba ,,  as the sum of tensor terms ?  In other words, is the condition 
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



 PPPP ;**;    a necessity for the tensor representation of the acceleration matrix by the foliation scalars, 

cba ,, ? 

 

There are other ways to achieve a Lagrangian with higher symmetries than U(1) that are shortly discussed. 

The following  action  can  be extended  to U(1) x SU(2) and to SU(3) symmetries by considering more than one 

Reeb vector. 
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Since the matrix of a Symplectic form  can  be described as two rotation and scaling hyper-planes, there is a 

possibility to locally add another scalar )2(P  and the Reeb vector of its gradient )2(P  
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 and obviously    
     and               from  the definition of a Reeb vector. 

The action is then dictated by the root of  the Gram determinant and is added to the previous action, 
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The physical meaning of       is another acceleration field in another plane. We will consider (91) as the “Electro-

Weak Geometric Chronon Action”. 

In the three dimensional space, Minkowsky perpendicular to P
 we can view three holonomic vectors fields that 

span the foliation tangent space as required by the Froben ius theorem . These can be locally described by three 

gradients, 

 )5(,)4(,)3( PPP
 and accordingly we can discuss their Reeb vectors,             and their projection on 

the foliation perpendicular to 
  

  
., 
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This time we can’t require the orthogonality condition which is described in (91) because there are no three 

Minkowsky – perpendicular hyper planes in space-time. 

Now we need the third root of the determinant of the Gram matrix of these new three Reeb vectors and the action 

becomes, 
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Appendix G: The Python code that was used for some of the mass ratio calculations out of area ratios 

 
import numpy as NP 

 

class ELECTROGRAVITY_CLASS: 

 

    def function_cubic_viete(self, a, b, c, d): # If all roots are real. 

 

        # Viete's algorithm when all roots are real. 

 

        b2 = NP.longdouble(b * b) 

        b3 = NP.longdouble(b2 * b) 

        a2 = NP.longdouble(a * a) 

        a3 = a2 * a 

 

        p = (3 * a * c - b2) / (3 * a2) 

 

        q = (2 * b3 - 9 * a * b * c + 27 * a2 * d) / (27 * a3) 

 

        offset = b / (3 * a) 

 

        t1 = 2 * NP.sqrt(-p / 3) * NP.cos(NP.arccos(NP.sqrt(-3 / p) * (3 * q) / (2 * p)) / 3) 

        t2 = 2 * NP.sqrt(-p / 3) * NP.cos(NP.arccos(NP.sqrt(-3 / p) * (3 * q) / (2 * p)) / 3 - 

NP.pi / 3) 

        t3 = 2 * NP.sqrt(-p / 3) * NP.cos(NP.arccos(NP.sqrt(-3 / p) * (3 * q) / (2 * p)) / 3 - 2 

* NP.pi / 3) 

 

        x1 = t1 - offset 

        x2 = t2 - offset 

        x3 = t3 - offset 

 

        return (x1, x2, x3) 

 

MAIN_electrogravity_class = ELECTROGRAVITY_CLASS() 
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f = 1 - 1/96 

 

x1, x2, x3 = \ 

MAIN_electrogravity_class.function_cubic_viete(1, -1, -f / 96, (f * f) / 192) 

 

x4, x5, x6 = \ 

MAIN_electrogravity_class.function_cubic_viete(1, -1, f / 96, (f * f) / 192) 

 

f = 4 / NP.pi 

 

x7, x8, x9 = \ 

MAIN_electrogravity_class.function_cubic_viete(1, -1, -f / 96, (f * f) / 192) 

 

print("Anti-gravity: X1,X2,X3 = (%.14lf, %.14lf, %.14lf)" %(x1, x2, x3)) 

print("Gravity: X4,X5,X6 = (%.14lf, %.14lf, %.14lf)" %(x4, x5, x6)) 

print("Anti-gravity: X7,X8,X9 = (%.14lf, %.14lf, %.14lf)" %(x7, x8, x9)) 

 

print("Muon mass in MeV/C^2 105.658374524") 

print("Predicted electron mass im MeV/C^2 %.14lf" % ((105.658374524 * (x7 - 1)) / (1 + (x1-1)*(1-

x4)))) 

0 

x4, x5, x6 = \ 

MAIN_electrogravity_class.function_cubic_viete(1, -1, f / 96, f*f / 192) 

 

x8 = (1 + NP.sqrt(1 - 1/(NP.pi * 6)))/2 

 

print("Gravity: X4,X5,X6 = (%.14lf, %.14lf, %.14lf)" %(x4, x5, x6)) 

print("Gravity: X8 = %.14lf" % x8) 

 

print("Predicted Tau particle out of the W Boson 80385 MeV/C^2 = %.14lf " % (80385*(1-x4)/(1+1-

x8))) 

 

f = (1 - 1/96) * (4 / NP.pi) 

 

x7, x8, x9 = \ 

MAIN_electrogravity_class.function_cubic_viete(1, -1, -f / 96, (f * f) / 192) 

 

x10, x11, x12 = \ 

MAIN_electrogravity_class.function_cubic_viete(1, -1, f / 96, (f * f) / 192) 

 

print("Anti-gravity: X7,X8,X9 = (%.14lf, %.14lf, %.14lf)" %(x7, x8, x9)) 

print("Gravity: X10,X11,X12 = (%.14lf, %.14lf, %.14lf)" %(x10, x11, x12)) 

print("Average 1/(1 - (1/(X7-1) + 1/(1-x10))/2) = %.14lf" %(1/((x7 - x10)/2))) 

 

print("Better prediction: Tau out of the W Boson 80385 MeV/C^2 = %.14lf " \ 

          % (80385*(1-x4)/(1+0.5*(x7-x10)))) 

 

x7 = (1 + NP.sqrt(1 + 1/(NP.pi * 6)))/2 

x10 = (1 + NP.sqrt(1 - 1/(NP.pi * 6)))/2 

 

print("Another prediction: Tau out of the W Boson 80369 MeV/C^2 = %.14lf " \ 

         % (80369 *(1-x4)/(1+0.5*(x7-x10)))) 

 

input("Press Enter to exit> ") 
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Appendix H: The C++ code that was used to approximate the Fine Structure Constant via geometry. There is 

a better calculation in Appendix I. There is an additional code that was used for the calculation of the exact 

Fine Structure Constant. The latter code was not included due to its length. 

 
#include "stdafx.h" 

#include <math.h> 

#include <conio.h> 

// #define FINE_STUCTURE_STEP 0.0001 

#define FINE_STRUCTURE_LOOP 100000 // Must be 1 / step. 

#define FINE_STUCTURE_STEP ((long double)1.0/FINE_STRUCTURE_LOOP) 

#define FINE_STRUCTURE_PI 3.1415926535897932384626433832795 

#define FINE_STRUCTURE_ITERATIONS 32 

// 0.5 of the distance. 

long double FUNCTION_distance(long double d_angle,long double d_area_ratio) 

{ 

  long double d_square_height,d_r,d_scaled,d_l,d_step,d_sum, 

              d_l_square,d_delta_ratio; 

  int i; 

  d_step = sin(d_angle) / FINE_STRUCTURE_LOOP; 

  d_square_height = cos(d_angle); 

  d_square_height *= d_square_height; 

  d_delta_ratio = d_area_ratio - 1; 

  // d_scaled = d_square_height * d_area_ratio; 

  d_l = 0; 

  d_sum = 0; 

  for (i = 0; i < FINE_STRUCTURE_LOOP; i++,d_l+=d_step) 

  { 

    d_l_square = d_l * d_l; 

    d_r = sqrt(d_l_square + d_square_height); 

    d_scaled = d_square_height * (1 + d_r * d_delta_ratio); 

    d_sum += sqrt(d_l_square + d_scaled) / d_r; 

  } 

  return d_sum * d_step; 



43 
 

} 

 

// Calculate 0.5 of the distance. 

long double FUNCTION_average_distance(long double ad_area_ratio) 

{ 

  long double ad_x,ad_step,ad_sum,ad_distance; 

  int i; 

 

  ad_sum = 0; 

  ad_step = (long double)FINE_STRUCTURE_PI * FINE_STUCTURE_STEP; 

 

  for (i = 0, ad_x = 0; i < FINE_STRUCTURE_LOOP; i++,ad_x+=ad_step) 

  { 

    ad_distance = FUNCTION_distance(ad_x * 0.5, ad_area_ratio); 

    // 2 * 2Pi / 4Pi = 1. 

    // Also area that grows by b and is divided by an area that grows by b is 1. 

    ad_sum += sin(ad_x) * ad_distance; 

  } 

  return ad_sum * ad_step; 

} 

void FUNCTION_roots(void) 

{ 

  long double r_root1,r_root2,r_f1, r_f2; 

  long double r_result; 

  int i; 

  // Start close to already known attractors & save time. 

  r_root1 = 1.0048700774565755; 

  r_root2 = 0.98905515302403790; 

  r_f1 = 1.3354957147970252; 

  r_f2 = 1.3284582439903136; 

  for (i = 0; i < FINE_STRUCTURE_ITERATIONS; i++) 

  { 
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    r_f1 = FUNCTION_average_distance(r_root1); 

    r_root1 = (192 * r_root1 * r_root1 + 

               2 * r_root1 / r_f1 - 

               1.0/(r_f1 * r_f1))/192; 

    r_root1 = cbrt(r_root1); 

    r_f2 = FUNCTION_average_distance(r_root2); 

    r_root2 = (192 * r_root2 * r_root2 - 

               2 * r_root2 / r_f2 - 

               1.0 / (r_f2 * r_f2)) / 192; 

    r_root2 = cbrt(r_root2); 

    r_result = sqrt(1 / ((r_root1 - 1)*(1 - r_root2))); 

    printf("%.9lf, x1=%.9lf, x2=%.9lf2, 1/f1=%.9lf, 1/f2=%.9lf2\n", 

           r_result,r_root1,r_root2,1/r_f1,1/r_f2); 

  } 

} 

int main() 

{ 

  while (_kbhit()) _getch(); // Clear keyboard input. 

  FUNCTION_roots(); 

  while (_kbhit()) _getch(); // Clear keyboard input. 

  puts("Press Enter to exit the console."); 

  getchar(); 

  return 0; 

} 

 

Appendix I: The C++ code for the exact inverse Fine Structure Constant 

 
// Physics_Sum.cpp : Defines the entry point for the console application. 

// 

 

#include "stdafx.h" 

#include<math.h> 

#include<conio.h> 

 

long double PHYSICS_pi; 

 

inline 

void PHYSICS_cubic_viete(long double cv_a, 

                         long double cv_b, 
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                         long double cv_c, 

                         long double cv_d, 

                         long double cv_x[1]) 

{ 

  long double cv_b2,cv_b3,cv_a2,cv_a3,cv_p,cv_q,cv_offset, 

              cv_2sqrt, cv_sqrt,cv_inner,cv_t; 

 

  cv_b2 = cv_b * cv_b; 

 

  cv_b3 = cv_b2 * cv_b; 

  cv_a2 = cv_a * cv_a; 

  cv_a3 = cv_a2 * cv_a; 

 

  cv_p = 

  ((long double)3.0 * cv_a * cv_c - cv_b2) / 

  ((long double)3.0 * cv_a2); 

 

  cv_q = 

  ((long double)2.0 * cv_b3 - 

   (long double)9.0 * cv_a * cv_b * cv_c + 

   (long double)27.0 * cv_a2 * cv_d) / 

  ((long double)27.0 * cv_a3); 

 

  cv_offset = cv_b / ((long double)3.0 * cv_a); 

 

  cv_sqrt = sqrtl(-cv_p / (long double)3.0); 

  cv_2sqrt = (long double)2.0 * cv_sqrt; 

  cv_inner = 

  acosl(((long double)3.0 * cv_q) / 

        ((long double)2.0 * cv_p) / cv_sqrt) / (long double)3.0; 

 

  cv_t = cv_2sqrt * cosl(cv_inner); 

 

  cv_x[0] = cv_t - cv_offset; 

} 

 

 

inline 

void PHYSICS_full_cubic_viete(long double cv_a, 

                              long double cv_b, 

                              long double cv_c, 

                              long double cv_d, 

                              long double cv_x[3]) 

{ 

  long double cv_b2, cv_b3, cv_a2, cv_a3, cv_p, cv_q, cv_offset, 

    cv_2sqrt, cv_sqrt, cv_inner, cv_t1, cv_t2, cv_t3; 

 

  cv_b2 = cv_b * cv_b; 

 

  cv_b3 = cv_b2 * cv_b; 

  cv_a2 = cv_a * cv_a; 

  cv_a3 = cv_a2 * cv_a; 

 

  cv_p = (3 * cv_a * cv_c - cv_b2) / (3 * cv_a2); 

 

  cv_q = 

  (2 * cv_b3 - 9 * cv_a * cv_b * cv_c + 27 * cv_a2 * cv_d) / 

  (27 * cv_a3); 

 

  cv_offset = cv_b / (3 * cv_a); 

 

  cv_sqrt = sqrtl(-cv_p / (long double)3.0); 
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  cv_2sqrt = (long double)2.0 * cv_sqrt; 

  cv_inner = 

  acosl(((long double)3.0 * cv_q) / 

        ((long double)2.0 * cv_p) / cv_sqrt) / (long double)3.0; 

 

  cv_t1 = cv_2sqrt * cosl(cv_inner); 

  cv_t2 = cv_2sqrt * cosl(cv_inner - PHYSICS_pi / 3); 

  cv_t3 = cv_2sqrt * cosl(cv_inner - 2 * PHYSICS_pi / 3); 

 

  cv_x[0] = cv_t1 - cv_offset; 

  cv_x[1] = cv_t2 - cv_offset; 

  cv_x[2] = cv_t3 - cv_offset; 

} 

 

inline 

void PHYSICS_results(long double r_f,long double r_x[2]) 

{ 

  long double r_y[1]; 

 

  PHYSICS_cubic_viete(1, -1, -r_f / 96, (r_f * r_f) / 192,r_y); 

 

  r_x[0] = r_y[0]; 

 

  PHYSICS_cubic_viete(1, -1, r_f / 96, (r_f * r_f) / 192, r_y); 

 

  r_x[1] = r_y[0]; 

} 

 

inline 

void PHYSICS_full_results(long double r_f, 

                          long double r_x1[3], 

                          long double r_x2[3]) 

{ 

  PHYSICS_full_cubic_viete(1, -1, -r_f / 96, (r_f * r_f) / 192, r_x1); 

  PHYSICS_full_cubic_viete(1, -1, r_f / 96, (r_f * r_f) / 192, r_x2); 

} 

 

long double PHYSICS_get_MUON_95_96_denominator(void) 

{ 

  long double g_y[2]; 

  long double g_f; 

 

  g_f = 95.0; 

  g_f /= 96.0; 

 

  PHYSICS_cubic_viete(1, -1, -g_f / 96, (g_f * g_f) / 192, g_y); 

  PHYSICS_cubic_viete(1, -1, g_f / 96, (g_f * g_f) / 192, g_y + 1); 

 

  return 1 + (g_y[0]-1) * (1-g_y[1]); 

} 

 

long double PHYSICS_get_MUON_gravity_antigavity_ratios(long double g_y[2]) 

{ 

  long double g_f; 

 

  PHYSICS_pi = acosl(-1); 

 

  g_f = 4; 

  g_f /= PHYSICS_pi; 

 

  PHYSICS_cubic_viete(1, -1, -g_f / 96, (g_f * g_f) / 192, g_y); 

  PHYSICS_cubic_viete(1, -1, g_f / 96, (g_f * g_f) / 192, g_y + 1); 
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  g_y[0] -= 1; 

  g_y[1] = 1 - g_y[1]; 

 

  return sqrtl(g_y[0]* g_y[1]); 

 

} 

 

 

long double PHYSICS_get_W_Z_ratio(long double g_W_Z[2]) 

{ 

  long double g_f,g_r; 

  long double g_W[2], g_Z[2]; 

 

  PHYSICS_pi = acosl(-1); 

 

  g_f = 4.0; 

  g_f /= PHYSICS_pi; 

 

  g_W[0] = (1 + sqrt(1 + g_f / 24)) * 0.5 - 1; 

  g_W[1] = 1 - (1 + sqrt(1 - g_f / 24)) * 0.5; 

 

  g_f = 95.0; 

  g_f /= 96.0; 

 

  g_Z[0] = (1 + sqrt(1 + g_f / 24)) * 0.5 - 1; 

  g_Z[1] = 1 - (1 + sqrt(1 - g_f / 24)) * 0.5; 

 

  g_f = g_W[0]*g_W[1]; 

 

  g_W_Z[0] = sqrtl(g_f); 

  g_W_Z[1] = sqrtl(g_Z[0] * g_Z[1]); 

 

  g_r = sqrtl(g_W_Z[0] / g_W_Z[1]) * (1 + g_f); 

 

  return g_r; 

} 

 

 

long double PHYSICS_get_deivative(long double g_xi, 

                                  long double g_d, 

                                  long double g_power) 

{ 

  long double g_deriv1, g_deriv2, g_J,g_d_to_power,g_cos,g_sin, 

              g_inverse_power; 

 

  g_inverse_power = 1 / g_power; 

 

  g_d_to_power = powl(g_d, g_power); 

 

  g_J = g_xi * (1+1/ g_d_to_power); 

 

  g_cos = cosl(g_J); 

  g_sin = sinl(g_J); 

 

  //g_deriv = 

  //sinl(g_J) * 0.5 * g_xi * g_power / (g_d_to_power * g_d) - 

  //powl(g_d/ 95 * 95 * 96 * 96, g_inverse_power - 1) * g_inverse_power; 

 

  g_deriv1 = -(2 / (g_cos*g_cos))*g_sin*g_xi*g_power / (g_d_to_power * g_d); 

  g_deriv2 = 

  -g_inverse_power * powl(95 * 95 * 96 * 96 / g_d, g_inverse_power-1) * 
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  (95 * 95 * 96 * 96/(g_d * g_d)); 

 

  return g_deriv1 - g_deriv2; 

} 

 

long double PHYSICS_get_deivative2(long double g_d, 

                                   long double g_power) 

{ 

  long double g_deriv, g_inverse_power; 

 

  g_inverse_power = 1 / g_power; 

 

  g_deriv = 

  g_inverse_power * powl(g_d /(95 * 95 * 96 * 96), g_inverse_power - 1) / 

  95 * 95 * 96 * 96; 

 

  return g_deriv; 

} 

 

 

 

long double PHYSICS_get_alpha_iteration(double g_xi) 

{ 

  long double g_factor = 95 * 95 * 96 * 96, i; 

  long double g_d = 600000, g_r, g_r1, g_r_mid, 

              g_delta = 524288, g_d1, g_d2, g_ret; 

 

  for (i = 0; i < 1000; i++) 

  { 

    g_ret = g_factor / g_d; 

    g_r = g_ret - 2/cosl(g_xi*(1 + 1 / g_d)); 

    g_d1 = g_d + g_delta; 

    g_r1 = g_factor / g_d1 - 2 / cosl(g_xi*(1 + 1 / g_d1)); 

    g_delta *= 0.5; 

    g_d2 = g_d + g_delta; 

    g_r_mid = g_factor / g_d2 - 2 / cosl(g_xi*(1 + 1 / g_d2)); 

 

    if (g_r_mid>0) g_d = g_d2; 

 

    printf("1/Alpha: %.18lf, error %.18lf\n", g_ret, g_r); 

  } 

 

  printf("1/Alpha: %.18lf, error %.18lf\n", g_ret, g_r); 

 

  return g_r; 

} 

 

long double PHYSICS_get_alpha_iteration2(double g_xi) 

{ 

  long double g_factor = 96 * 96 * 96 * 96, g_nom; 

  int i; 

  long double g_d = 600000, g_r, g_r1, g_r_mid, 

              g_delta = 524288, g_d1, g_d2, g_ret; 

 

  g_nom = 1; 

 

  g_nom *= (long double)96 / 95; 

  g_nom *= (long double)96 / 95; 

 

  for (i = 0; i < 1000; i++) 

  { 

    g_ret = g_factor / g_d; 
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    g_r = g_ret - 2 / cosl(g_xi*(1 + g_nom / g_d)); 

    g_d1 = g_d + g_delta; 

    g_r1 = g_factor / g_d1 - 2 / cosl(g_xi*(1 + g_nom / g_d1)); 

    g_delta *= 0.5; 

    g_d2 = g_d + g_delta; 

    g_r_mid = g_factor / g_d2 - 2 / cosl(g_xi*(1 + g_nom / g_d2)); 

 

    if (g_r_mid>0) g_d = g_d2; 

 

    printf("1/Alpha: %.18lf, error %.18lf\n", g_ret, g_r); 

  } 

 

  printf("1/Alpha: %.18lf, error %.18lf\n", g_ret, g_r); 

 

  return g_r; 

} 

 

 

long double PHYSICS_get_alpha_iteration3(long double g_xi, 

                                         long double g_45_207) 

{ 

  long double g_factor = 95 * 95 * 96 * 96, i; 

  long double g_d = 600000, g_r, g_r1, g_r_mid, 

              g_delta = 524288, g_d1, g_d2, g_ret; 

 

  for (i = 0; i < 1000; i++) 

  { 

 

    g_ret = powl(g_factor / g_d, 1 + g_45_207); 

 

    g_r = 

    g_ret - 

    2 / cosl(g_xi*(1 + 1 / powl(g_d,1.0/(1+g_45_207)))); 

 

    g_d1 = g_d + g_delta; 

    g_r1 = 

    powl(g_factor / g_d1, 1 + g_45_207) - 

    2 / cosl(g_xi*(1 + 1 / powl(g_d1, 1.0 / (1 + g_45_207)))); 

 

    g_delta *= 0.5; 

    g_d2 = g_d + g_delta; 

    g_r_mid = 

    powl(g_factor / g_d2, 1 + g_45_207) - 

    2 / cosl(g_xi*(1 + 1 / powl(g_d2, 1.0 / (1 + g_45_207)))); 

 

    if (g_r_mid>0) g_d = g_d2; 

 

    // printf("1/Alpha: %.18lf, error %.18lf\n", g_ret, g_r); 

  } 

 

  printf("1/Alpha, s iterations: %.18lf, d %.18lf, error %.18lf\n", 

         g_ret, powl(g_d, 1.0 / (1 + g_45_207)), g_r); 

 

  return g_r; 

} 

 

 

long double PHYSICS_get_alpha_iteration4(long double g_xi, 

                                         long double g_d) 

{ 

  long double g_factor = 95 * 95 * 96 * 96, i; 

  long double g_p = 95.9, g_r, g_r1, g_r_mid, 
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              g_delta = 0.2, g_p1, g_p2, g_ret; 

 

  for (i = 0; i < 1000; i++) 

  { 

 

    g_ret = powl(g_factor / g_d, 1 + 1/(g_p * g_p)); 

 

    g_r = 

    g_ret - 

    2 / cosl(g_xi*(1 + 1 / powl(g_d, 1.0 / (1 + 1 / (g_p * g_p))))); 

 

    g_p1 = g_p + g_delta; 

 

    g_r1 = 

    powl(g_factor / g_d, 1 + 1 / (g_p1 * g_p1)) - 

    2 / cosl(g_xi*(1 + 1 / powl(g_d, 1.0 / (1 + 1 / (g_p1 * g_p1))))); 

 

    g_delta *= 0.5; 

    g_p2 = g_p + g_delta; 

    g_r_mid = 

    powl(g_factor / g_d, 1 + 1 / (g_p2 * g_p2)) - 

    2 / cosl(g_xi*(1 + 1 / powl(g_d, 1.0 / (1 + 1 / (g_p2 * g_p2))))); 

 

    if (g_r_mid>0) g_p = g_p2; 

 

    // printf("1/Alpha: %.18lf, error %.18lf\n", g_ret, g_r); 

  } 

 

  printf("1/Alpha, p iterations: %.18lf, error %.18lf, d %.18lf, p %.18lf\n", 

         g_ret, g_r, powl(g_d, 1.0 / (1 + 1 / (g_p2 * g_p2))), g_p); 

 

  return g_r; 

} 

 

 

long double PHYSICS_tau_by_iteration(void) 

{ 

  long double tbi_f,tbi_f1,tbi_f_mid,tbi_delta,tbi_r,tbi_r1,tbi_r_mid, 

              tbi_x[2],tbi_95_96,tbi_w,tbi_45,tbi_207,tbi_weinberg,tbi_tau, 

              tbi_tau_e1, tbi_tau_e2,tbi_tau_e,tbi_w_e,tbi_z_e,tbi_geome_avg; 

  long double tbi_speculation_attacks[2],tbi_d, tbi_d1, tbi_d2, 

              tbi_45_207_denom,tbi_err_r,tbi_inverse_fsc; 

  int i; 

  

  tbi_f = 1.5; 

  tbi_delta = 0.1; 

  PHYSICS_pi = acosl(-1); 

 

  for (i = 0; i < 1000; i++) 

  { 

    PHYSICS_results(tbi_f, tbi_x); 

    tbi_r = sqrt(1/(tbi_x[0]-1)) - 0.5 / (1 - tbi_x[1]); 

    tbi_tau = tbi_x[1]; 

 

    tbi_f1 = tbi_f + tbi_delta; 

    PHYSICS_results(tbi_f1, tbi_x); 

    tbi_r1 = sqrt(1 / (tbi_x[0] - 1)) - 0.5 / (1 - tbi_x[1]); 

 

    tbi_delta *= 0.5; 

    tbi_f_mid = tbi_f + tbi_delta; 

    PHYSICS_results(tbi_f_mid, tbi_x); 

    tbi_r_mid = sqrt(1 / (tbi_x[0] - 1)) - 0.5 / (1 - tbi_x[1]); 
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    if (tbi_r_mid<0) tbi_f = tbi_f_mid; 

  } 

 

  // PHYSICS_get_alpha_iteration2(tbi_f); 

 

  tbi_tau = 0.5/(1-tbi_tau); 

 

  printf("Xi: %.16lf\n",tbi_f); 

 

  PHYSICS_results(tbi_f - 0.0001, tbi_x); 

  tbi_speculation_attacks[0] = sqrtl(1 / (tbi_x[0]-1)); 

  PHYSICS_results(tbi_f + 0.0001, tbi_x); 

  tbi_speculation_attacks[1] = sqrtl(1 / (tbi_x[0]-1)); 

  tbi_weinberg = PHYSICS_get_W_Z_ratio(tbi_x); 

 

  printf("Z/W, theory: %.16lf\n", tbi_weinberg); 

 

  tbi_w = tbi_x[0]; 

 

  printf("SQRT(W_roots): %.16lf\n", 1/ tbi_w); 

 

  tbi_geome_avg = 

  PHYSICS_get_MUON_gravity_antigavity_ratios(tbi_x); 

 

  tbi_207 = tbi_x[0]; 

  tbi_45 = tbi_x[1]; 

 

  PHYSICS_get_alpha_iteration3(tbi_f, tbi_207 * tbi_45); 

 

  // long double tbi_deriv; 

 

  printf("r45, r207 = %.16lf, %.16lf\n", 

         1/tbi_45, 1/tbi_207); 

 

  tbi_95_96 = PHYSICS_get_MUON_95_96_denominator(); 

  tbi_45_207_denom = 1 / (1 + tbi_x[0] * tbi_x[1]); 

 

  tbi_r = tbi_tau * 2; 

  tbi_r *= tbi_r; 

  tbi_r *= tbi_r; 

  tbi_r *= 0.5; 

 

  PHYSICS_get_alpha_iteration4(tbi_f, tbi_r); 

 

  // Low absolute derivative means numerical difficulties. 

  //tbi_deriv = 

  //PHYSICS_get_deivative2(tbi_r, tbi_45_207_denom); 

  //tbi_deriv = 

  //PHYSICS_get_deivative(tbi_f, 

  //                      tbi_r, 

  //                      tbi_45_207_denom); 

 

  tbi_d = powl(tbi_r, tbi_45_207_denom); 

 

  printf("d before raised to power -1/(1 + (a-1)(1-b)) : %.20lf\n", tbi_r); 

 

  // tbi_d = powl(tbi_r, 1.0/(1.0+1.0/((96+1.0/18)*(96 + 1.0 / 18)))); 

 

  tbi_inverse_fsc = 2 / cosl(tbi_f * (1 + (long double)1 / tbi_d)); 

 

  printf("1) >>>>>>>>>>>>>>>>>>> d: %.16lf, 1/Alpha theory: %.16lf\n", 
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         tbi_d, tbi_inverse_fsc); 

 

  tbi_d = powl(tbi_r, (long double)96.0*96.0/(1+96*96)); 

  printf("2) d: %.16lf, 1/Alpha of 96^2: %.16lf\n", 

         tbi_d, 2 / cosl(tbi_f * (1 + (long double)1 / tbi_d))); 

 

  tbi_d1 = powl((95 * 95 * 96 * 96) / tbi_r, 1 + tbi_45*tbi_207 / (1+1.0/32768)); 

 

  tbi_err_r = tbi_inverse_fsc / (tbi_d1 - tbi_inverse_fsc); 

   

  printf("3) Err^-1:%.16lf , r: %.16lf, 1/Alpha approximation: %.16lf\n", 

         tbi_err_r, tbi_r, tbi_d1); 

 

  // tbi_d2 = tbi_r * powl(96 * 96 * tbi_x[0] * tbi_x[1], 1 / (96 * 96 * tbi_x[0] * tbi_x[1])); 

  tbi_d2 = tbi_r * 96 * 96 * tbi_x[0] * tbi_x[1]; 

 

  tbi_inverse_fsc = 2 / cosl(tbi_f * (1 + (long double)1 / tbi_d2)); 

 

  printf("4) d2: %.16lf, 1/Alpha appoximation: %.16lf\n", 

         tbi_d2, tbi_inverse_fsc); 

 

  tbi_d = 1/(1-powl(tbi_r, tbi_45_207_denom) / (96*96*tbi_x[0] * tbi_x[1]*tbi_r)); 

 

  tbi_tau_e = 105.6583745 * tbi_tau * (1 + tbi_w) / tbi_95_96; 

  tbi_tau_e1 = 

  105.6583745 * tbi_speculation_attacks[0] * (1 + tbi_w) / tbi_95_96; 

  tbi_tau_e2 = 

  105.6583745 * tbi_speculation_attacks[1] * (1 + tbi_w) / tbi_95_96; 

  tbi_w_e = tbi_tau_e * (1 + tbi_w) / tbi_45; 

  tbi_z_e = tbi_w_e * tbi_weinberg; 

 

  tbi_delta = 1/tbi_geome_avg - (tbi_tau * tbi_tau / tbi_45 - 1 / (tbi_95_96 - 1)); 

   

  printf("d = 606400.8, 1/Alpha %.16lf\n", 

         2/cosl(tbi_f * (1+(long double)1/606400.8))); 

 

  printf("Electron from Muon, theory: %.16lf MeV\n", 

         (tbi_207 / tbi_95_96) * 105.6583745); 

  printf("E_tau from Muon, theory %.16lf MeV\n", tbi_tau_e); 

  printf("E_tau MeV, Xi-0.0001 %.16lf\n", tbi_tau_e1); 

  printf("E_tau MeV, Xi+0.0001 %.16lf\n", tbi_tau_e2); 

  printf("E_w MeV from Muon, theory %.16lf\n", tbi_w_e); 

  printf("E_z MeV from Muon, theory %.16lf\n", tbi_z_e); 

 

  return tbi_f; 

} 

 

 

int main() 

{ 

  PHYSICS_tau_by_iteration(); 

 

  while (_kbhit()) _getch(); 

 

  puts("Press Enter to exit."); 

 

  getchar(); 

 

  return 0; 

} 
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