
 1

Evolutionary Traps

Eytan H. Suchard,

Abstract

Genetic Algorithms are a good method of optimization if the fitness function to be

optimized conforms to some important demands. An important demand from a fitness

function is that the sought for gene can be approached by cumulative mutations that

improve the fitness function. However, even simple fitness functions that comply with

that demand and that are not deceptive can be hard for Genetic Algorithms. The reason

is that there should be another demand, that the Markov chain which models the

intermediate genes leading to the optimal gene, has a probability that doesn’t tend to

zero as the gene grows. This demand is not always fulfilled when there are attractors

other than the optimal gene. The offered fitness function has a parameter, namely 4. If

the parameter is below 4 than canonical genetic algorithms can converge to the optimal

solution. If the parameter is 4 and above, canonical genetic algorithms will converge to

genes that are not optimal. Values below 4 and close to 4 e.g. 3.90 can be used to test

the speed of convergence and thus the offered fitness function is an important test tool

for general genetic algorithms.

Keywords: Genetic Algorithms, Deceptive fitness functions, Evolutionary Traps

ANT / ANB – Applied Neural Technologies / Biometrics - http://www.anbsys.com
Email: eytan_il@netvision.net.il
Phone: +972-4-8700391
Facsimile: +972-4-8732622

mailto:eytan_il@netvision.net.il

 2

1. Introduction - Constructing a hard fitness function

It is important to understand the motivation of this paper. It is legitimate to test the

limits of the capabilities of genetic algorithms to converge to a globally optimal

gene. Every computational tool has its limits. These limits are put to test via

difficult cases. This paper describes a fitness function that challenges standard

Genetic Algorithms by its convergence to local optimum genes. This situation

can be remedied by large scale especially tailored mutations such as flipping all

the bits of the binary gene, however, by representing each bit by a pair of two bits

and a XOR operation between them, it is easy to construct an example of a new

fitness function that defies large scale bit flips. A pair of two bits in the new gene

with the new fitness function will be then 01 or 10 representing 1 and 00 or 11

representing 0. A fitness function that defies bit rotations can also be constructed

by adding bits in which a certain sequence of 1s and 0s must always appear.

More and more complex fitness functions can be constructed such that they defy

large scale (many bit flips) tailored mutations.

In other words, large scale especially tailored mutations represent knowledge

about the fitness function that has to be optimized.

There are ways to achieve convergence even if the fitness function is hard, by

simply forcing genes to be different from each other. An external control that

punishes for resemblance is equivalent to brute force search because a large

enough population in which all individuals are forced to be different from each

other must cover all possible genes. GAs - Genetic Algorithms – that use very

large populations are also equivalent to brute force search because then every

mutation, even most rare has a feasible probability, however if the size of the

population is more than the atoms that constitute the crust of the Earth then the

GAs become unrealistic.

 3

Let us use the word Crux to represent the following function of m

10,...},3,2,1{,2...222 Crux 1)(2m531   mm (1.1)

So Crux is the sum of all odd powers of 2 up to the power 12 m .

In binary representation it is 010101010101 …

Let the numbers

12m2m210 2,2,...,2,2,2  (1.2)

be represented in binary digits by either 1 if they are summed or 0 if not in the

following term, Sum. Let Sum designate the sum of the powers of two that were

selected by the digit 1.

}1,0{ s.t. 2 Sum k

12m

0k

k

k  




 (1.3)

We will call Sum, the “gene” and
k , its representation.

Let

SumCruxDelta  (1.4)

Or SumDelta 010101010101 in binary representation.

Now let us provide an additional arbitrary rule in building our fitness function - if

some of the numbers

2m2420 2,...,2,...,2,2,2 k (1.5)

are summed in (1.3) then Delta is divided by 4 to the power of the number of

selected numbers from the set 2m420 2,...,2,...,2,2,2 k , in other words, even powers

of 2.

The result is the Target / Fitness function that we will try to minimize.

 Factor s.t.
4

Target
m

0k

2k


 
Factor

Delta
 (1.6)

Please note that the number 4 whose powers constitute the denominator is

discussed in the abstract.

 4

For example 10101000 will be (Crux - (1+4+16))/(4*4*4).

010101 will be Crux - (2+8+32) and will not be further divided by 4 because no

even power of 2 was summed in (1.3). In other words, if 02k  for mk 0

 Target Delta .

The target function which is described in (1.6) is the fitness function that will be

discussed TargetFitness  . The term “target” is mostly used in optimization

problems rather than in Genetic Algorithms.

Gene definition: The gene will be 1}2m{0,1,2,...k s.t. }1,0{ k 

If there are 52 bits then the optimal gene is 1 ,0 12k2k   or in bit semantics

01

which minimizes the fitness function to 0. The choice of the denominator in (1.6)

is not trivial at all. Other choices could be made such as denominator Factor5

 Factor s.t.
5

Target
m

0k

2k


 
Factor

Delta
but such a choice would yield a function

which is not interesting to GA researchers.

The reason for this choice
4

Target
Factor

Delta
 of a fitness function will be seen in the

following analysis.

2 Analysis

Before we proceed it is useful to mention another work on hard fitness functions,

J. Horn, D.E. Goldberg 1995 [1]. There are some important differences.

For example : Factor4 in (1.6) can be replaced by FactorC for some constant C . If

4C then simple Genetic Algorithms do not converge to the optimal gene

010101…01. So we have a family of hard fitness functions for GAs and we can

choose the level of hardness.

We first recall from Genetic Algorithms that if there are n bits in the gene and the

probability of a bit flip is some 10  q . The probability that k bits at specific

 5

indices will be flipped (1 to 0 or 0 to 1) is kk qq)1( .

Special symbols definition:

The ratio of probabilities between k bit flips and L bit flips both at specific k

indices of
k in (1.3) and (1.6) will be defined as

Lk

Lk

LnL

knk

q

q

qq

qq
Lkr

















)1()1(

)1(
),(and If

2

1
q then let p designate 1

1





q

q
p

then
L

k

p

p
Lkr ),(and for 0),(

L

k
 Lkr . In the analysis let the symbol

}{ kp designate kk qq)1( .

The analysis assumes
2

1
q and thus 1),( LkrLk . The strategy of the

analysis will be to show that genes will statistically need more bit flips, say 3k

to reduce edit distance from the

optimal gene 01 01 … 01 than the bit flips that are required to reduce the fitness

function (GAs try to minimize the fitness function).

Throughout the analysis, bits will be arranged in pairs. Sequence

… 10 10 10 …10 will mean that bits indexed

 n/2}{0,1,2,...hr, 2h,2r 4,2r 2,2r 2r,  will be set to 1 and bits indexed

12h,2r5,2r 3,1,2r2r  will be set to 0 such that n is the number of bits

22  mn regarding (1.1)-(1.6).

Conversely, the sequence

… 01 01 01 … 01 will mean that bits indexed 2h2r 4,2r 2,2r 2r,  will be

set to 0 and bits indexed 12h,2r5,2r 3,1,2r2r  will be set to 1.

There exist genes namely,

10 10 10 …. 10 10 11 and 11 11 11 …. 11 11 10

to which the algorithm converges with probability that tends to 1 as the

number of bits grows, instead of converging to the optimal gene 0101 …

01010101 providing that complex mutations, such as inverting all the bits, are not

used. Please remember the short discussion in the introduction about fitness

 6

functions that are unaffected by bit inversion or other large scale mutations.

We will focus on the definition of the fitness function (1.6) as is, such that

mutations are simply random bit flips rather than highly organized flips as

mentioned in the introduction. Also if
2

1
q then LktsLkr  .. 1),(and the

results that we reach will not hold for such an extremely high mutation probability.

Progress by mutation

Obviously if we treat the genes that change during runtime as a Markov chain we

have to show that the ratio between the probability to get correct mutations –

ones that reduce edit distance from the optimal gene –and to get other mutations

that reduce the fitness function is greater than 1 for all genes of the chain.

Let us recall 1)(2m531 2...222 Crux  which is represented by sum over

01 01 …. 01.

We now evaluate the following 10 10 10 …. 10 10 11 01 01 … 01 01 01 (2.1)

such that the last 1 from left to right out of the pair of two successive 1s

is bit 12 r starting from bit index 0 on the left. In other words 112 r and also

12 r .

Bit 112 r represents 12r2-  when calculating Delta , (1.4) so its contribution to

the numerator in (1.6) is 02-2 12r12r  . The pair 1,1 122  rr  contribute

rr 4*242*22222-2 2r2r2r2r12r12r  . We will use this simple equality

and our Delta for this “gene” becomes by (1.1) and (1.4),

3

1
4

3

2

3

1
4

3

2
4

3

14
)4...444(4

)12(...)22()22()22(2

0321

4-2r3-2r2-2r1-2r2r12r12r














rrr
r

rrrr

SumCruxDelta

 (2.2)

 7

and the fitness function to be minimized by our algorithm becomes

111

1

1

10

43

1

6

1

43

1

2

1

3

1

4

4*2
3

14

4

4*24...44

4
Target





















rrr

r
r

r

rr

Factor

Delta

 (2.3)

The term

143

1
 r

 (2.4)

decreases when r grows or in other words,

if the algorithm already converged to 10 10 10 …. 10 10 11 01 01 … 01 01 01

then the fitness function for 10 10 10 …. 10 10 10 11 01 … 01 01 01

such that the last 1 out of the pair of two successive 1s, is bit 32 r starting from

bit index 0 on the left and that represents 32r2-  when calculating Delta , (1.4).

The fitness function becomes,

12 43

1

6

1

43

1

6

1

4
Target

 





rrFactor

Delta
 (2.5)

then moving (mutating) in the wrong direction of evolution (edit distance from the

optimum gene grows with evolution) by flipping two bits decreases the fitness

function that we try to minimize !!!

If the probability of a bit flip is q then the probability of two bits flip is }{ 2P .

Comparing that probability to the bits inversion of the sub-sequence 10 10 10 …. 10

10 10 suppose that the sub-sequence has k2 bits, then the ratio between

}{ 2kP and }{ 2P is)2,2(kr which tends to zero as k grows. In the rest of the

discussion we may implicitly refer to)2,(kr ,)3,(kr ,)2,2(kr ,)1,(kr simply by

writing }{ 2p , }{ 3p , }{p to compare between the probability of bit flips that are

required to reduce the edit distance to the optimized gene versus the probability

 8

of bit flips that are required to reduce the fitness function.

Unless all k2 bits are flipped, any mutation in the sequence 10 10 10 …. 10 will

only increase the fitness function that we try to minimize. Let us now examine

another more general “gene”

01 01 01 …. 10 10 10 … 10 10 11 01 01 … 01 01 01 (2.6)

for which the first wrong bit (in relation to the best “gene” 01 01 01 … 01), is bit u2

starting from bit index 0 on the left on the left encodes ruu  s.t. ,2- 2 when

calculating Delta , (1.4) and the contribution of the subsequence 0 1 122  uu 

to the target function is uuuu 42*12*02 21212   . The last 1 out of the pair of

two successive 1s represents 12r2-  or more precisely this number is subtracted

from Crux and thus the contribution of 112 r to the target function is

022 1212   rr .

Our fitness function then becomes

u

urur

ur
ur

u

ur

ururu

Factor

Delta

4)
43

1

6

1
(

4

)42
3

14
(4

4

)424...4(4

4
Target

1

1

1

0





















 (2.7)

(2.7) shows that even if the GA is on its way to the best gene 01 01 01 …. 01 01 01

1 ,0 12k2k   then any wrong sub-sequence …01 01 01 10 10 10 … 10 10 01 01

01 01… in the middle of the sequence grows either left by changing 01 to 10 with

probability }{ 2p or by changing two right bits 01 to 10 with probability }{ 2p which

decreases u which decreases the fitness function (2.7) or to the right which

increases r and thus decreases the fitness function in (2.7). If the terms “right”

and “left” annoy the reader, the author would say that using “left” for low indices

 9

and “right” for high indices i of 12mi0 s.t. i are intuitive and are easier to

follow. Other options of wrong mutations will be discussed next. It is mentioned

again that for a sequence 10 10 … 10 10 10 with k2 bits, the probability that the

sequence will become the optimal one 01 01 01 … 01 01 is }{ 2kp because the

only way to reduce the fitness function and get a correct sequence 01 01 01 …

01 is to flip the entire k2 bits.

The shortest edit distance to reduction of the fitness function in (2.7) is by flipping

two successive bits, either bits 12 r and 22 r counting from bit index 0 on the

left or by flipping bits 22 u and 12 u . Again the probability of progress which

gets farther from the gene is }{ 2P , given that the probability of a bit flip is q .

A very similar proof to (2.5) can be constructed for the gene

11 11 11 …. 11 11 11 … 11 11 10 01 01 … 01 01 01 (2.8)

Such that the first zero bit is bit 12 r starting from bit 0 to the right.

The fitness function then evaluates to,

11

11

1

22212

43

1

6

1

4

3

14

2

4

4

1...222

4
Target




















rr

rr

r

rrr

Factor

Delta

 (2.9)

Flipping three bits and 10 01 01transforms into 11 10 01 with probability }{ 3P and

reduces the fitness function.

The probability of turning a sequence 11 11 11 … 11 11 11 into

01 01 01 … 01 01 01 when the number of pairs is k , is simply to flip k bits which is

}{ kp because if every other bits in the 11 11 11 … 11 sequence are flipped then

the fitness function only increases and thus the entire wrong k bits have to be

flipped. }{ kp tends to zero for big k and thus flipping three bits with probability

}{ 3P is more likely to occur because 1}{
}{

}{
)3,(3

3
 k

k

p
p

p
kr .

Now we will explore a more general “gene”

 10

01 01 01 …. 11 11 11 … 11 11 10 01 01 … 01 01 01

such that the sequence of successive 1 bits starts at bit u2 when the first bit

index is 0 and the first 0 to the right of this sequence is the bit indexed 12 r .

Similar arguments to the ones that lead to (2.7) yield the very same value,

u

urur

ururu

Factor

Delta
4)

43

1

6

1
(

4

4*2)4...4(4

4
Target

11

0









 (2.10)

It is easy to see that 01 01 01 …. 11 11 11 … 11 11 01 01 01 … 01 01 01

changes to 01 01 01 …. 11 11 11 … 11 11 10 01 01 … 01 01 01

with probability }{ 2p . Comparing that to k bit flips of 11 11 11 … 11 into

01 01 01 … 01 we have a probabilities ratio)2,(kr .

By looking at sub sequences of the form 010101 … 10 10 10 10 … 11 01 01 … 01,

and 11 11 11 11 … 11 11 10

the fitness function of every “gene” can be expressed by summation of several

sums like (2.7)








S

k

u

ur
S

SS1

4)
1

43

1

6

1
(Target (2.11)

such that S is the number of such sub-sequences.

Now let us explore concatenation of two sub sequences of the form

10 10 10 … 10 11 10 10 10 … 11 (2.12)

It is easily verifiable that a single flip of the second bit out of the three successive

ones with value 1 reduces the two sub sequences to one sub sequence and also

reduces the fitness function. It is also the shortest edit distance that reduces the

 11

fitness function which is (the edit distance) here the number of bit flips.

The probability of such a mutation is }{P , the probability of a single bit flip.

There are two other cases that we have to check, namely

11 11 11 … 11 11 10 10 10 10 … 11 (2.13)

and

10 10 10 … 10 11 11 11 11 11 … 10 (2.14)

Looking at (2.7) the power u4 offers the greatest decrease of

the term u

ur
4)

43

1

6

1
(

1
 which means that the most probable

mutation of (2.13) will be

11 11 11 … 11 11 10 10 10 10 … 11 (2.15)

11 11 11 … 11 10 10 10 10 10 … 11

which is a flip of one bit. The probability of such a concatenation is }{P , the

probability of a single bit flip (in relation to other bit flips).

For a very similar reason the most probable mutation of (2.14) will be

10 10 10 … 10 11 11 11 11 11 … 10 (2.16)

10 10 10 … 11 11 11 11 11 11 … 10

We are almost done. What is left to handle is edit distances.

By (2.11), (2.12), (2.13), (2.14), (2.15), (2.16) for a sub sequence of the form

…10 10 10 … 10 11… (2.17)

Or

 12

…11 11 11 … 11 10…

that has W bits, it takes 12 W bit flips to reach a sub – sequence of the optimal

“gene” / solution and otherwise the fitness function only grows if not all the 12 W

are flipped. “sub – sequence of the optimal gene” means …01 01 01 01 … 01….

We have also shown in (2.15) and (2.16) that it is most likely that the algorithm

will statistically converge to a “gene” of the type that appears in the right sub-

sequence. Such a progress is of probability }{P , the probability of a single bit flip.

What we have shown is that if the “gene” edit distance from the best fitness

function is Q then there is no other statistical way to reach that “gene” except for

performing all Q bit flips otherwise the “gene” by selection will either flip two bits

or one to get the fastest improvement.

Finally, the initial bit values are at random, sub sequences such as 10 10 … 10

and 11 11 11 … 11 are at unlimited number and at unlimited length as the

number of bits in the gene n grows which proves the difficulty of the fitness

function for Genetic Algorithms that use mutation operators alone because the

probabilities to improve the gene by wrong mutations are .

The probability ratio of
q

q
p

p

p
kr

p

p
kr

p

p
kr

kkk




1
 s.t.)1,(,)2,(,)3,(

123
 which

proves that unless all the bits are 01 01 01 01 … 01 01 then the most probable

mutations only increase the edit distance from the optimal gene.

Progress by crossover

The discussion about (2.13) and (2.14) leads to the following cases,

Crossover between

10 10 10 … and 10 1010 10 …

or between

11 11 11 … and 11 11 11 …

 13

or between

11 11 11 … and 10 10 10 10 … (2.18)

or between

01 01 01 … and 01 01 01 …

Or between

01 01 01 … and 11 11 11 …

Or between

01 01 01 … and 10 10 10 …

Crossover of 10 10 10 … and 10 1010 10 leaves the bits ,...2,1,0,012k  k

and thus do not contribute to reduction of edit distance from the optimal genes.

Crossover of 11 11 11 … and 11 11 11 … leaves the bits ,...2,1,0,12k  k

and thus do not reduce the edit distance either.

Crossover between 11 11 11 … and 10 10 10 10 leaves the bits

,...2,1,0,12k  k . By (2.15) and (2.16) the latter crossover will converge to one

of the following genes, 11 11 11 11 … or 10 10 10 10 … with the already

discussed probabilities.

The more interesting case is crossover between the sub sequences

01 01 01 … and 11 11 11 … or 01 01 01 … and 10 10 10 … .

By the arguments after (2.6) and after (2.10) the result of such crossover is

inferior to crossover between 10 10 10 … and 10 1010 10 … or

11 11 11 … and 11 11 11.

To summarize, the crossover operator does not improve the convergence to the

optimal gene unlike in Michael D. Vose, Alden H. Wright 1995 [2] discussion in

which positive crossover rate does improve convergence to the optimal gene.

In our case the fitness function under canonical Genetic Algorithms has three

attractors and it converges only to two of them.

 14

There is a way to achieve convergence to the optimal gene by huge populations.

In the case of 52 bits, a population of
26

1

q
 will averagely have one case in which

all ,...2,1,0,2k k bits can be 02k  . Such huge populations are used to mimic

brute force search. Using for example 1024 bits fitness functions renders GAs

that use such huge populations practically infeasible.

To understand how unsuccessful crossover between 10 10 10 … 10 and 01 01

01 01 … 01 sequences can be we now continue.

Calculating the contribution of the sequence 10 10 10 … 10 10 11 and

one of the pairs replaced by 01 instead of the previous 10 such that the index of

the 0 in 01 is S2 we have:

10 10 10 .. 01, 10 … 10 10 11 (2.19)

1 ,0 122  SS  (2.20)

Let the index of the left 1 be u2 . By (2.7) before replacing the pair

0 ,1 122  SS  with 1 ,0 122  SS  , the contribution of the sequence to the

fitness function is

1

1

4

)4*2
3

14
(

4








ur

ur
ur

u (2.21)

The 01 subsequence subtracts sss 224 12   from the numerator and divides the

denominator by 4 because the false bit 12 S was flipped to 02 S . So we

have:

)42
3

1
(4

4

)44*2
3

14
(

4

1

ursu

ur

Sur
ur

u 











 (2.22)

 15

Which means that any such crossover dramatically increases the target function

that our genetic algorithm is supposed to minimize.

Other crossover results between 01 01 01 … 01 and 10 10 10 … 10 also

increase the function that the genetic algorithm is supposed to minimize.

A very similar analysis follows the crossover between 01 01 01 … 01 and 11 11

11 … 11.

Let),(ba ggC be defined as the crossover operator between genes ag and bg .

Crossover),(ba ggC proves to be successful if odd indexed (starting from index

0) bits taken from ag are equal to 1, even indexed bits (starting from index 0)

taken from the first gene ag are equal to 0 and the same applied to gene bg . The

“progress by mutation” analysis shows that sequences such as 10 10 10 10 … 11

will most likely grow in the discussions between (2.3) and (2.7) and also between

(2.9) and (2.10). Unless most of the bits will form the sequence 01 01 01 01 ,,,

1 ,0 122  SS  , the resulting gene will only increase the target function that the

algorithm is supposed to minimize and thus crossover will be unsuccessful.

3. Experimental performance

The division by power of 4 produces genes for which the fitness function is well

below 1 and well above 0 and yet are not the optimal, for which the fitness

function is 0.00. Artificial punishments for resemblance to other individuals

(genes) of the population and other advanced GA methods did not solve the

problem of convergence to the wrong gene although such intervention in the

process is quite typical to GAs and in large populations is equivalent to brute

force search. Complex tailored mutations such as inverting all the bits did help,

however, by modification to the fitness function it is easy to construct a new

fitness function for which large scale bit inversion and bit rotations do not change

the fitness function or makes it bigger if we try to minimize the function.

The reader may say that the fitness function (1.6) is designed to fail Genetic

Algorithms. That is quite true. A lot of thought was put in (1.6) prior to this paper,

 16

However, it raises a legitimate need to develop a theory that will identify which

fitness functions can be and which can’t be minimized or maximized using

Genetic Algorithms. The offered fitness function may be hard to other

optimization methods and not only to genetic algorithms.

Here are some hands-on results. Simulations included 52 bits.

The 52 bits optimal gene that was evasive is:

01 Target 0.00 (3.1)

Under 0.39% and 1.56% mutations, the 52 bits program converged to:

1110 Target 0.17 (3.2)

or to

1011 Target 0.17

On the way to the first two genes, stayed hundreds of generations in …

11100101 Target 0.17

111001 Target 0.17

111001010101 Target 0.17

The latter is unstable due to (2.8).

With 12.5% mutation the false gene that is mostly reached after thousands of

generations is:

1011 Target 0.17

Conscious rotation to the right of all the bits or inversion of all bits of the last

gene yields almost the real gene, however, by re-indexing or adding some bits to

slightly modify the fitness function, even rotation which consists of 52 ordered

mutations doesn’t reach the optimal “gene”. Example for re-indexing, replace the

indices of 02 and 12 then of 42 and 52 etc. In general, swap the indices of k42

and 142 k leave all the other indices as they were and update the definition of

(1.6).

 17












 
12m14k

0k

14k

12m24k

0k

24k Factor s.t.
4

Target 
Factor

Delta
 (3.3)

(3.3) shows that even a previously tailored set of ordered mutations need not

solve our convergence problem in the most general case of minimizing arbitrary

fitness functions. There was an attempt by the author to avoid Drift and Scaling

problems as defined by Rudolph, G [3], and J.L. Shapiro [4] - by controlling

diversity in the population. This was done by multiplication of single individual

results by a wide range of arbitrary punishments. The leading individual was

selected as the one that achieved the smallest fitness function. The second result

was multiplied by a punishment 1.1 if the gene of the second individual was the

same as the gene of the first chosen individual. The best such gene was sought

for. The third individual was chosen by calculating its fitness function. Then if the

third individual was identical to the first, then the fitness was multiplied by 1.1

and if it was identical to the second it was further punished by an additional

multiplication by a factor of 1.1. A third such best fitness function was sought for.

The selection process continued like in the description above until a quarter of

the population was selected. In large populations the offered selection algorithm

is obviously equivalent to brute force search. To summarize, large scale tailored

mutations and external population control, or their equivalent terms - brute force

search and complex conscious mutations - such as Lin-Kernighan

transformations are means that are used to help the genetic algorithm to

overcome local minima. For references on large scale mutations in the Traveling

Salesman Problem genetic algorithm, the reader can refer to D. Applegate, R. E.

Bixby, V. Chvàtal & W. Cook [5] and K-T. Mak & A. J. Morton [6].

Part of the large scale mutations – that involve an algorithm for more than one bit

flip – have a “natural counterpart“ in retrotransposon and transposon jumps.

There is a lot of bibliography on retrotransposons, e.g. Eugene M McCarthy and

John F McDonald [7]. Unfortunately large scale mutations do not remedy

convergence problems in the general case as mentioned in the introduction.

 18

Here is an example of code that forces the Genetic Algorithm to perform brute
force search.

// --

// Population degeneracy prevention algorithm.

// --

// Sort the first survivors/2 by fitness and be difference

// from leading. This algorithm promotes some gene diversity.

s_half = member_n_survivors >> 1;

s_idx = s_sort_class.member_array[0].member_index;

member_organism_class_array[member_n_population] =

member_organism_class_array[s_idx];

member_organism_class_array[s_idx].function_print_console();

printf(" %.2lf",member_results_array[s_idx]);

member_results_array[member_n_population] =

member_results_array[s_idx];

for(i=1;i<s_half;i++)

{

 double s_grade,s_min=0;

 int j,s_min_idx = -1;

 for(j=0;j<member_n_population;j++)

 {

 s_grade = member_results_array[j];

 for(k=0;k<i;k++)

 {

 if (member_organism_class_array[member_n_population + k] ==

 member_organism_class_array[j])

 {

 s_grade *= 1.1; // Punish for identity.

 }

 }

 if (s_grade < s_min || s_min_idx < 0)

 {

 s_min = s_grade;

 s_min_idx = j;

 }

 }

 member_organism_class_array[member_n_population+i] =

 member_organism_class_array[s_min_idx];

 member_results_array[member_n_population+i] =

 member_results_array[s_min_idx];

 19

}

// --

// End of 'Population degeneracy prevention algorithm'.

// --

Experimental report:

The settings of the Genetic Algorithms that were tried can be viewed in Table 1

(In a separate document).

4. Short analysis

What we have shown is the following

Let LGGGGG ,...,,,, 4321 represent genes such that:

4.1.
1G is a zero initial state in which zero is assigned to all the bits of the gene.

In the program both random initialization and zero initializations can be

used.

4.2. The edit distance 1),(Edit_Dist 1 ii GG and the fitness function for 1iG is

better than in iG ,)(arg)(arg 1 ii GetTGetT  .

4.3.
LG yields the minimal fitness function.

4.4. By (2.4) the difference in the fitness function that is sufficient for the

algorithm not to converge to the best “gene” is infinitesimally small.

4.4 is a bit surprising (and not only as a game of words).

Then GAs need not converge to
LG !

Obviously the states 01000000……, 0101000000000…., 010101000000000…

which represent)12(531531311 2...222,222,22,2  k form such Gs.

 20

5. How to run the demo – online publication

The C++ console application files GA.CPP,MSORTIDX.CPP,RAND.CPP,

MSORTIDX.H,RAND.H have to be included in a new Console Application project

and should be compiled.

There are three arguments that the program expect:

5.1. Number of generations. Typical values are between 2000 and 1000000.

5.2. Deciding whether the fitness function is (1.6) or simply (1.4). If this number is

0 then the fitness function uses a denominator which consists of powers of 4

as previously mentioned. If not then the fitness function is simply the

absolute value |Crux - Sum|.

5.3. The third parameter is the number of survivors in each generation or epoch.

The number of individuals in the population is four times that number. Each

surviving individual will have at least three offspring.

Program example command line is: GA 1000000 0 80

To stop the program while running then please press S or s or N or n.

6. Conclusions

GAs are a stochastic way to optimize a target function that is also known as
Fitness function. There could be some traps, however, even infinitesimally small
as the number of bits grow, that can fool the genetic algorithm and cause it to
converge to genes that are very far in terms of edit distance from the optimal
ones.
This article shows the need for a theory that will be able to point out which fitness
functions can be and which can’t be optimized by genetic algorithms.
Such a theory is a productive goal in the research of GAs.

 21

7. Acknowledgement

My thanks are to my Colleagues Mr. Raviv Yatom and Mr. Irad Heller for their
remarks on Genetic Algorithms.

 22

8. References

[1] J. Horn, D.E. Goldberg, Genetic Algorithms Difficulty and the Modality of

Fitness Landscapes, In L.D. Whitley & M.D. Vose (Eds.), Foundations of
Genetic Algorithms 3 (FOGA 3), pp. 243-269, Morgan Kaufmann. (1995)

[2] Michael D. Vose, Alden H. Wright, Stability of Vertex Fixed Points and

Applications, In D.Whitley and M.Vose (Eds.) Foundations of Genetic
Algorithms 3, Morgan Kaufmann, San Mateo, CA, 103-114. 1995.

[3] Rudolph, G., "Convergence analysis of canonical genetic algorithms",

 IEEE Transactions On Neural Networks, Jan. 1994, pages 96-101

[4] J.L. Shapiro, "Drift and Scaling in Estimation of Distribution Algorithms",

 Evolutionary Computation, MIT Press Cambridge, MA, USA, 2005.

[5] D. Applegate, R. E. Bixby, V. Chvàtal & W. Cook,
 “Data Structures for the Lin-Kernighan Heuristic”,

 Talk presented at the TSP-Workshop, CRCP, Rice University (1990).

[6] K-T. Mak & A. J. Morton,

 “A modified Lin-Kernighan traveling-salesman heuristic”,
 Oper. Res. Let., 13, 127-132 (1993).

[7] Eugene M McCarthy and John F McDonald, "Long terminal repeat
 retrotransposons of Mus musculus"

 Genome Biology 2004, 5:R14, 13 February 2004

