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Abstract 
 
Genetic Algorithms are a good method of optimization if the fitness function to be 

optimized conforms to some important demands. An important demand from a fitness 

function is that the sought for gene can be approached by cumulative mutations that 

improve the fitness function. However, even simple fitness functions that comply with 

that demand and that are not deceptive can be hard for Genetic Algorithms. The reason 

is that there should be another demand, that the Markov chain which models the 

intermediate genes leading to the optimal gene, has a probability that doesn’t tend to 

zero as the gene grows. This demand is not always fulfilled when there are attractors 

other than the optimal gene. The offered fitness function has a parameter, namely 4. If 

the parameter is below 4 than canonical genetic algorithms can converge to the optimal 

solution. If the parameter is 4 and above, canonical genetic algorithms will converge to 

genes that are not optimal. Values below 4 and close to 4 e.g. 3.90 can be used to test 

the speed of convergence and thus the offered fitness function is an important test tool 

for general genetic algorithms. 
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1. Introduction - Constructing a hard fitness function 

 

It is important to understand the motivation of this paper. It is legitimate to test the 

limits of the capabilities of genetic algorithms to converge to a globally optimal 

gene. Every computational tool has its limits. These limits are put to test via 

difficult cases. This paper describes a fitness function that challenges standard 

Genetic Algorithms by its convergence to local optimum genes.  This situation 

can be remedied by large scale especially tailored mutations such as flipping all 

the bits of the binary gene, however, by representing each bit by a pair of two bits 

and a XOR operation between them, it is easy to construct an example of a new 

fitness function that defies large scale bit flips. A pair of two bits in the new gene 

with the new fitness function will be then 01 or 10 representing 1 and 00 or 11 

representing 0. A fitness function that defies bit rotations can also be constructed 

by adding bits in which a certain sequence of 1s and 0s must always appear. 

More and more complex fitness functions can be constructed such that they defy 

large scale (many bit flips) tailored mutations. 

In other words, large scale especially tailored mutations represent knowledge 

about the fitness function that has to be optimized.  

There are ways to achieve convergence even if the fitness function is hard, by 

simply forcing genes to be different from each other. An external control that 

punishes for resemblance is equivalent to brute force search because a large 

enough population in which all individuals are forced to be different from each 

other must cover all possible genes. GAs - Genetic Algorithms – that use very 

large populations are also equivalent to brute force search because then every 

mutation, even most rare has a feasible probability, however if the size of the 

population is more than the atoms that constitute the crust of the Earth then the 

GAs become unrealistic. 
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Let us use the word Crux to represent the following function of m  

 

10,...},3,2,1{,2...222 Crux 1)(2m531   mm                             (1.1)  

So Crux is the sum of all odd powers of 2 up to the power 12 m . 

In binary representation it is 010101010101 … 

Let the numbers  

12m2m210 2,2,...,2,2,2                                              (1.2) 

be represented in binary digits by either 1 if they are summed or 0 if not in the 

following term, Sum. Let Sum designate the sum of the powers of two that were 

selected by the digit 1. 

}1,0{  s.t.  2  Sum k

12m

0k

k

k  




                               (1.3) 

We will call Sum, the “gene” and 
k , its representation. 

Let 

SumCruxDelta                                              (1.4) 

Or  SumDelta  .....010101010101   in binary representation. 

Now let us provide an additional arbitrary rule in building our fitness function - if 

some of the numbers 

2m2420 2,...,2,...,2,2,2 k                                            (1.5) 

are summed in (1.3) then Delta  is divided by 4  to the power of the number of 

selected numbers from the set 2m420 2,...,2,...,2,2,2 k , in other words, even powers 

of 2. 

The result is the Target / Fitness function that we will try to minimize. 

    Factor    s.t.    
4

Target
m

0k

2k


 
Factor

Delta
               (1.6) 

Please note that the number 4 whose powers constitute the denominator is 

discussed in the abstract. 
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For example 10101000 will be (Crux - (1+4+16))/(4*4*4). 

010101 will be Crux - (2+8+32) and will not be further divided by 4 because no  

even power of 2 was summed in (1.3). In other words, if 02k   for mk 0  

 Target Delta . 

The target function which is described in (1.6) is the fitness function that will be 

discussed TargetFitness  .  The term “target” is mostly used in optimization 

problems rather than in Genetic Algorithms.  

Gene definition: The gene will be 1}2m{0,1,2,...k  s.t.  }1,0{ k   

If there are 52 bits then the optimal gene is 1 ,0 12k2k    or in bit semantics  

0101010101010101010101010101010101010101010101010101 

which minimizes the fitness function to 0. The choice of the denominator in (1.6) 

is not trivial at all. Other choices could be made such as denominator Factor5  

    Factor    s.t.    
5

Target
m

0k

2k


 
Factor

Delta
but such a choice would yield a function 

which is not interesting to GA researchers.  

The reason for this choice   
4

Target
Factor

Delta
  of a fitness function will be seen in the 

following analysis. 

 

2 Analysis 

 

Before we proceed it is useful to mention another work on hard fitness functions, 

J. Horn, D.E. Goldberg 1995 [1].  There are some important differences. 

For example : Factor4  in (1.6) can be replaced by FactorC  for some constant C . If 

4C  then simple Genetic Algorithms do not converge to the optimal gene 

010101…01. So we have a family of hard fitness functions for GAs and we can 

choose the level of hardness.  

We first recall from Genetic Algorithms that if there are n  bits in the gene and the 

probability of a bit flip is some 10  q  . The probability that k  bits at specific  
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indices will be flipped (1 to 0 or 0 to 1) is kk qq )1(  .  

Special symbols definition: 

The ratio of probabilities between k bit flips and L  bit flips both at specific k  

indices of 
k  in (1.3) and (1.6) will be defined as 

Lk

Lk

LnL

knk

q

q

qq

qq
Lkr

















)1()1(

)1(
),(  and If 

2

1
q   then let p   designate 1

1





q

q
p   

then 
L

k

p

p
Lkr ),(   and  for 0),(   

L

k
 Lkr  . In the analysis let the symbol 

}{ kp designate kk qq )1(  . 

The analysis assumes 
2

1
q  and thus  1),(  LkrLk .  The strategy of the 

analysis will be to show that genes will statistically need  more bit flips, say 3k  

to reduce edit distance from the  

optimal gene 01 01 … 01 than the bit flips that are required to reduce the fitness 

function (GAs try to minimize the fitness function). 

Throughout the analysis, bits will be arranged in pairs. Sequence  

… 10  10  10 …10 will mean that bits indexed 

 n/2}{0,1,2,...hr,  2h,2r  4,2r 2,2r 2r,   will be set to 1 and bits indexed 

12h,2r5,2r 3,1,2r2r   will be set to 0 such that n  is the number of bits 

22  mn  regarding (1.1)-(1.6). 

Conversely,  the sequence  

… 01  01  01 … 01 will mean that bits indexed 2h2r  4,2r 2,2r 2r,   will be 

set to 0 and bits indexed 12h,2r5,2r 3,1,2r2r   will be set to 1. 

There exist genes namely,  

10 10 10 …. 10 10 11   and  11 11 11 …. 11 11 10 

to which the algorithm converges with probability that tends to 1 as the 

number of bits grows, instead of converging to the optimal gene 0101 … 

01010101 providing that complex mutations, such as inverting all the bits, are not 

used. Please remember the short discussion in the introduction about fitness  
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functions that are unaffected by bit inversion or other large scale mutations. 

We will focus on the definition of the fitness function (1.6) as is, such that 

mutations are simply random bit flips rather than highly organized flips as 

mentioned in the introduction. Also if 
2

1
q  then LktsLkr    ..  1),(  and the 

results that we reach will not hold for such an extremely high mutation probability. 

 

Progress by mutation 

Obviously if we treat the genes that change during runtime as a Markov chain we 

have to show that the ratio between the probability to get correct mutations – 

ones that reduce edit distance from the optimal gene –and to get other mutations 

that reduce the fitness function is greater than 1 for all genes of the chain. 

Let us recall 1)(2m531 2...222 Crux    which is represented by sum over 

01 01 …. 01. 

We now evaluate the following 10 10 10 …. 10 10 11 01 01 … 01 01 01             (2.1) 

such that the last 1 from left to right out of the pair of two successive 1s 

is bit 12 r  starting from bit index 0 on the left. In other words 112 r  and also 

12 r . 

Bit 112 r represents 12r2-   when calculating Delta , (1.4) so its contribution to 

the numerator in (1.6) is 02-2 12r12r  . The pair 1,1 122  rr   contribute 

rr 4*242*22222-2 2r2r2r2r12r12r  . We will use this simple equality 

and our Delta   for this “gene” becomes by (1.1) and (1.4), 

 

3

1
4

3

2

3

1
4

3

2
4

3

14
)4...444(4

)12(...)22()22()22(2

0321

4-2r3-2r2-2r1-2r2r12r12r














rrr
r

rrrr

SumCruxDelta

  (2.2) 
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and the fitness function to be minimized by our algorithm becomes 

111

1

1

10

43

1

6

1

43

1

2

1

3

1

4

4*2
3

14

4

4*24...44
 

4
Target





















rrr

r
r

r

rr

Factor

Delta

                              (2.3) 

 

The term 

143

1
 r

                                                                                                            (2.4) 

decreases when r  grows or in other words, 

if  the algorithm already converged to 10 10 10 …. 10 10 11 01 01 … 01 01 01 

then the fitness function for 10 10 10 …. 10 10 10 11 01 … 01 01 01 

such that the last 1 out of the pair of two successive 1s, is bit 32 r  starting from 

bit index 0 on the left and that represents 32r2-   when calculating Delta , (1.4).  

The fitness function becomes, 

12 43

1

6

1

43

1

6

1
 

4
Target

 





rrFactor

Delta
                                               (2.5) 

then moving (mutating) in the wrong direction of evolution (edit distance from the 

optimum gene grows with evolution) by flipping two bits decreases the fitness 

function that we try to minimize !!! 

If the probability of a bit flip is q  then the probability of two bits flip is }{ 2P . 

Comparing that probability to the bits inversion of the sub-sequence 10 10 10 …. 10 

10 10 suppose that the sub-sequence has k2  bits, then the ratio between 

}{ 2kP and }{ 2P is )2,2( kr  which tends to zero as k  grows.  In the rest of the 

discussion we may implicitly refer to )2,( kr , )3,( kr , )2,2( kr , )1,( kr simply by 

writing }{ 2p , }{ 3p , }{p to compare between the probability of bit flips that are 

required to reduce the edit distance to the optimized gene versus the probability  
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of bit flips that are required to reduce the fitness function. 

Unless all k2  bits are flipped, any mutation in the sequence 10 10 10 …. 10 will 

only increase the fitness function that we try to minimize. Let us now examine 

another more general “gene” 

01 01 01 …. 10 10  10 … 10 10 11 01 01 … 01 01 01                                           (2.6) 

for which the first wrong bit (in relation to the best “gene” 01 01 01 … 01), is bit u2  

starting from bit index 0 on the left on the left encodes ruu  s.t. ,2- 2  when 

calculating Delta , (1.4) and the contribution of the subsequence 0  1 122  uu   

to the target function is uuuu 42*12*02 21212   . The last 1 out of the pair of 

two successive 1s represents 12r2-   or more precisely this number is subtracted 

from Crux  and  thus the contribution of 112 r  to the target function is 

022 1212   rr . 

Our fitness function then becomes  

u

urur

ur
ur

u

ur

ururu

Factor

Delta

4)
43

1

6

1
(

4

)42
3

14
(4

4

)424...4(4
 

4
Target

1

1

1

0





















                                      (2.7) 

 

(2.7) shows that even if the GA is on its way to the best gene 01 01 01 …. 01 01 01 

1 ,0 12k2k    then any wrong sub-sequence  …01 01 01 10 10  10 … 10 10  01 01  

 

01 01… in the middle of the sequence grows either left  by changing  01 to 10 with 

probability }{ 2p  or by changing two right bits 01 to 10 with probability }{ 2p  which 

decreases u  which decreases the fitness function (2.7) or to the right which 

increases r and thus decreases the fitness function in (2.7). If the terms “right” 

and “left” annoy the reader, the author would say that using “left” for low indices  
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and “right” for high indices i of 12mi0 s.t.  i  are intuitive and are easier to 

follow. Other options of wrong mutations will be discussed next. It is mentioned 

again that for a sequence 10 10 … 10 10 10  with k2  bits, the probability that the 

sequence will become the optimal one 01 01 01 … 01 01 is }{ 2kp  because the 

only way to reduce the fitness function and get a correct sequence 01 01 01 … 

01 is to flip the entire k2  bits. 

The shortest edit distance to reduction of the fitness function in (2.7) is by flipping 

two successive bits, either bits 12 r  and 22 r  counting from bit index 0 on the  

left or by flipping bits 22 u  and 12 u . Again the probability of progress which 

gets farther from the gene is }{ 2P , given that the probability of a bit flip is q . 

A very similar proof to (2.5) can be constructed for the gene 

11 11 11 …. 11 11  11 … 11 11 10 01 01 … 01 01 01                                        (2.8) 

Such that the first zero bit is bit 12 r  starting from bit 0 to the right. 

The fitness function then evaluates to, 

 

11

11

1

22212

43

1

6

1

4

3

14

2

4

4

1...222
 

4
Target




















rr

rr

r

rrr

Factor

Delta

                                       (2.9) 

Flipping three bits and 10 01 01transforms into 11 10 01 with probability }{ 3P  and 

reduces the fitness function. 

The probability of turning a sequence 11 11 11 … 11 11 11 into  

01 01 01 … 01 01 01 when the number of pairs is k , is simply to flip k  bits which is 

}{ kp  because if every other bits in the 11 11 11 … 11 sequence are flipped then 

the fitness function only increases and thus the entire wrong k  bits have to be  

flipped.  }{ kp  tends to zero for big k  and thus flipping three bits with probability 

}{ 3P  is more likely to occur because 1}{
}{

}{
)3,( 3

3
 k

k

p
p

p
kr . 

Now we will explore a more general “gene” 
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01 01 01 …. 11 11  11 … 11 11 10 01 01 … 01 01 01   

such that the sequence of successive 1 bits starts at bit u2  when the first bit 

index is 0 and the first 0 to the right of this sequence is the bit indexed 12 r . 

Similar arguments to the ones that lead to (2.7) yield the very same value, 

u

urur

ururu

Factor

Delta
4)

43

1

6

1
(

4

4*2)4...4(4
 

4
Target

11

0









           (2.10) 

It is easy to see that  01 01 01 …. 11 11  11 … 11 11 01 01 01 … 01 01 01 

 

changes to 01 01 01 …. 11 11  11 … 11 11 10 01 01 … 01 01 01 

with probability  }{ 2p . Comparing that to k  bit flips  of 11 11 11 … 11 into 

01 01 01 … 01 we have a probabilities ratio )2,( kr . 

 

By looking at sub sequences of the form 010101 … 10 10 10 10 … 11 01 01 …  01, 

and  11 11 11 11 … 11 11 10 

the fitness function of every “gene” can be expressed by summation of several 

sums like (2.7)  

 








S

k

u

ur
S

SS1

4)
1

43

1

6

1
(Target                                                (2.11) 

 

such that S  is the number of such sub-sequences. 

Now let us explore concatenation of two sub sequences of the form  

 

10 10 10 … 10 11 10 10 10 … 11                                                         (2.12) 

 

It is easily verifiable that a single flip of the second bit out of the three successive 

ones with value 1 reduces the two sub sequences to one sub sequence and also 

reduces the fitness function. It is also the shortest edit distance that reduces the  
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fitness function which is (the edit distance) here the number of bit flips. 

The probability of such a mutation is }{P , the probability of a single bit flip. 

There are two other cases that we have to check, namely 

 

11 11 11 … 11 11 10 10 10 10 … 11                                          (2.13) 

and  

10 10 10 … 10 11 11 11 11 11 … 10                                           (2.14) 

 

Looking at (2.7) the power u4  offers the greatest decrease of 

the term u

ur
4)

43

1

6

1
(

1
  which means that the most probable 

mutation of (2.13) will be 

 

11 11 11 … 11 11 10 10 10 10 … 11                                          (2.15) 

11 11 11 … 11 10 10 10 10 10 … 11                                             

 

which is a flip of one bit. The probability of such a concatenation is }{P , the 

probability of a single bit flip (in relation to other bit flips). 

 

For a very similar reason the most probable mutation of (2.14) will be 

 

10 10 10 … 10 11 11 11 11 11 … 10                                           (2.16) 

10 10 10 … 11 11 11 11 11 11 … 10 

 

We are almost done. What is left to handle is edit distances. 

By (2.11), (2.12), (2.13), (2.14), (2.15), (2.16)  for a sub sequence of the form 

 

…10 10 10 … 10 11…                                                                   (2.17) 

Or 
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…11 11 11 … 11 10… 

that has W  bits, it takes 12 W  bit flips to reach a sub – sequence of the optimal 

“gene” / solution and otherwise the fitness function only grows if not all the 12 W  

are flipped. “sub – sequence of the optimal gene” means …01 01 01 01 … 01…. 

 

We have also shown in (2.15) and (2.16) that it is most likely that the algorithm 

will statistically converge to a “gene” of the type that appears in the right sub-

sequence. Such a progress is of probability }{P , the probability of a single bit flip. 

What we have shown is that if the “gene” edit distance from the best fitness  

function is Q  then there is no other statistical way to reach that “gene” except for 

performing all Q  bit flips otherwise the “gene” by selection will either flip two bits 

or one to get the fastest improvement. 

Finally, the initial bit values are at random,  sub sequences such as 10 10 … 10 

and 11 11  11 … 11 are at unlimited number and at unlimited length as the 

number of bits in the gene n  grows which proves the difficulty of the fitness 

function for Genetic Algorithms that use mutation operators alone because the 

probabilities to improve the gene by wrong mutations are . 

The probability ratio of 
q

q
p

p

p
kr

p

p
kr

p

p
kr

kkk




1
  s.t.  )1,(,)2,(,)3,(

123
 which 

proves that unless all the bits are  01 01 01 01 … 01 01 then the most probable 

mutations only increase the edit distance from the optimal gene. 

 

Progress by crossover  

 
The discussion about (2.13) and (2.14) leads to the following cases, 
 
Crossover between 
 
10  10  10 … and  10 1010 10 … 

or between 

11 11 11 … and 11 11 11 … 
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or between 

11 11 11 … and  10 10 10 10 …                                 (2.18) 

or between  
 
01 01  01 … and  01 01  01 … 
 
Or between 
 
01 01 01 … and 11 11 11 … 
 
Or between 
 
01 01 01 … and 10 10 10 … 
 
 

Crossover of 10  10  10 … and  10 1010 10 leaves the bits ,...2,1,0,012k  k  

and thus do not contribute to reduction of edit distance from the optimal genes. 

Crossover of 11  11  11 … and  11 11 11 … leaves the bits ,...2,1,0,12k  k  

and thus do not reduce the edit distance either. 

Crossover between 11 11 11 … and  10 10 10 10 leaves the bits 

,...2,1,0,12k  k .  By (2.15) and (2.16) the latter crossover will converge to one 

of the following genes, 11 11 11 11 …   or  10 10 10 10 … with the already 

discussed probabilities. 

The more interesting case is crossover between the sub sequences 

01 01 01 … and 11 11 11 … or  01 01 01 … and 10 10 10 … . 

By the arguments after (2.6) and after (2.10) the result of such crossover is 

inferior to crossover between 10  10  10 … and  10 1010 10 … or 

11 11 11 … and 11 11 11. 

To summarize, the crossover operator does not improve the convergence to the 

optimal gene unlike in Michael D. Vose, Alden H. Wright 1995 [2]  discussion in 

which positive crossover rate does improve convergence to the optimal gene. 

In our case the fitness function under canonical Genetic Algorithms has three 

attractors and it converges only to two of them.  
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There is a way to achieve convergence to the optimal gene by huge populations. 

In the case of 52 bits, a population of  
26

1

q
 will averagely have one case in which 

all  ,...2,1,0,2k k  bits can be 02k  . Such huge populations are used to mimic 

brute force search. Using for example 1024 bits fitness functions renders GAs 

that use such huge populations practically infeasible.  

To understand how unsuccessful crossover between 10 10 10 … 10 and 01 01 

01 01 … 01 sequences can be we now continue. 

Calculating the contribution of the sequence 10 10  10 … 10 10 11  and 

one of the pairs replaced by 01 instead of the previous 10 such that the index of 

the 0 in 01 is S2  we have: 

 

10  10  10 .. 01, 10 … 10 10 11                    (2.19) 

1   ,0 122  SS                                (2.20) 

 

Let the index of the left 1 be u2 . By (2.7) before replacing the pair 

0   ,1 122  SS   with 1   ,0 122  SS  , the contribution of the sequence to the 

fitness function is  

1

1

4

)4*2
3

14
(

4








ur

ur
ur

u                         (2.21) 

The 01  subsequence subtracts sss 224 12    from the numerator and divides the 

denominator by 4 because the false bit 12 S  was flipped to 02 S . So we 

have: 

)42
3

1
(4

4

)44*2
3

14
(

4

1

ursu

ur

Sur
ur

u 











                        (2.22) 
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Which means that any such crossover dramatically increases the target function 

that our genetic algorithm is supposed to minimize. 

Other crossover results between 01 01 01 … 01 and 10 10 10 … 10 also 

increase the function that the genetic algorithm is supposed to minimize. 

A very similar analysis follows the crossover between 01 01 01 … 01 and 11 11 

11 … 11. 

Let ),( ba ggC  be defined as the crossover operator between genes ag  and bg . 

Crossover ),( ba ggC  proves to be successful if odd indexed (starting from index 

0) bits taken from ag  are equal to 1, even indexed bits (starting from index 0) 

taken from the first gene ag  are equal to 0 and the same applied to gene bg . The 

“progress by mutation” analysis shows that sequences such as 10 10 10 10 … 11 

will most likely grow in the discussions between (2.3) and (2.7) and also between 

(2.9) and (2.10). Unless most of the bits will form the sequence 01 01 01 01 ,,, 

1   ,0 122  SS  , the resulting gene will only increase the target function that the  

algorithm is supposed to minimize and thus crossover will be unsuccessful. 

 

3. Experimental performance 
 
The division by power of 4 produces genes for which the fitness function is well 

below 1 and well above 0 and yet are not the optimal, for which the fitness  

function is 0.00. Artificial punishments for resemblance to other individuals 

(genes) of the population and other advanced GA methods did not solve the 

problem of convergence to the wrong gene although such intervention in the 

process is quite typical to GAs and in large populations is equivalent to brute 

force search. Complex tailored mutations such as inverting all the bits did help, 

however, by modification to the fitness function it is easy to construct a new 

fitness function for which large scale bit inversion and bit rotations do not change 

the fitness function or makes it bigger if we try to minimize the function. 

The reader may say that the fitness function (1.6) is designed to fail Genetic 

Algorithms.  That is quite true. A lot of thought was put in (1.6) prior to this paper, 
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However, it raises a legitimate need to develop a theory that will identify which 

fitness functions can be and which can’t be minimized or maximized using 

Genetic Algorithms. The offered fitness function may be hard to other 

optimization methods and not only to genetic algorithms. 

 

 

Here are some hands-on results. Simulations included 52 bits. 

 

The 52 bits optimal gene that was evasive is: 

0101010101010101010101010101010101010101010101010101 Target 0.00   (3.1) 

 

Under 0.39% and 1.56% mutations, the 52 bits program converged to: 

1111111111111111111111111111111111111111111111111110 Target 0.17   (3.2) 

or to 

1010101010101010101010101010101010101010101010101011 Target 0.17 

On the way to the first two genes, stayed hundreds of generations in … 

1111111111111111111111111111111111111111111111100101 Target 0.17 

1111111111111111111111111111111111111111111111111001 Target 0.17 

1111111111111111111111111111111111111111111001010101 Target 0.17 

The latter is unstable due to (2.8). 

With 12.5% mutation the false gene that is mostly reached after thousands of 

generations is: 

1010101010101010101010101010101010101010101010101011 Target 0.17 

 

Conscious rotation to the right of all the bits or inversion of all bits of the last  

gene yields almost the real gene, however, by re-indexing or adding some bits to 

slightly modify the fitness function, even rotation which consists of 52 ordered 

mutations doesn’t reach the optimal “gene”. Example for re-indexing, replace the 

indices of 02  and  12  then of 42  and  52  etc. In general, swap the indices of  k42  

and  142 k  leave all the other indices as they were and update the definition of 

(1.6). 

 



 17 












 
12m14k

0k

14k

12m24k

0k

24k    Factor    s.t.    
4
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Delta
                    (3.3) 

 

(3.3) shows that even a previously tailored set of ordered mutations need not  

solve our convergence problem in the most general case of minimizing arbitrary  

fitness functions. There was an attempt by the author to avoid Drift and Scaling 

problems as defined by Rudolph, G [3], and J.L. Shapiro [4] - by controlling 

diversity in the population. This was done by multiplication of single individual 

results by a wide range of arbitrary punishments. The leading individual was 

selected as the one that achieved the smallest fitness function. The second result 

was multiplied by a punishment 1.1 if the gene of the second individual was the 

same as the gene of the first chosen individual. The best such gene was sought 

for. The third individual was chosen by calculating its fitness function. Then if the 

third individual was identical to the first, then the fitness was multiplied by 1.1  

and if it was identical to the second it was further punished by an additional 

multiplication by a factor of 1.1. A third such best fitness function was sought for. 

The selection process continued like in the description above until a quarter of  

the population was selected. In large populations the offered selection algorithm 

is obviously equivalent to brute force search. To summarize, large scale tailored 

mutations and external population control, or their equivalent terms - brute force 

search and complex conscious mutations - such as Lin-Kernighan 

transformations are means that are used to help the genetic algorithm to 

overcome local minima. For references on large scale mutations in the Traveling 

Salesman Problem genetic algorithm, the reader can refer to D. Applegate, R. E. 

Bixby, V. Chvàtal & W. Cook [5] and K-T. Mak & A. J. Morton [6]. 

Part of the large scale mutations – that involve an algorithm for more than one bit 

flip – have a “natural counterpart“ in retrotransposon and transposon jumps. 

There is a lot of bibliography on retrotransposons, e.g.  Eugene M McCarthy and 

John F McDonald [7]. Unfortunately large scale mutations do not remedy 

convergence problems in the general case as mentioned in the introduction. 
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Here is an example of code that forces the Genetic Algorithm to perform brute 
force search. 
 
// ---------------------------------------------------- 

// Population degeneracy prevention algorithm. 

// ---------------------------------------------------- 

 

// Sort the first survivors/2 by fitness and be difference 

// from leading. This algorithm promotes some gene diversity. 

 

s_half = member_n_survivors >> 1; 

 

s_idx = s_sort_class.member_array[0].member_index; 

 

member_organism_class_array[member_n_population] = 

member_organism_class_array[s_idx]; 

 

member_organism_class_array[s_idx].function_print_console(); 

 

printf(" %.2lf",member_results_array[s_idx]); 

 

member_results_array[member_n_population] = 

member_results_array[s_idx]; 

 

for(i=1;i<s_half;i++) 

{ 

  double s_grade,s_min=0; 

 

  int j,s_min_idx = -1; 

 

  for(j=0;j<member_n_population;j++) 

  { 

    s_grade = member_results_array[j]; 

 

    for(k=0;k<i;k++) 

    { 

      if (member_organism_class_array[member_n_population + k] == 

          member_organism_class_array[j]) 

      { 

        s_grade *= 1.1; // Punish for identity. 

      } 

    } 

 

    if (s_grade < s_min || s_min_idx < 0) 

    { 

      s_min = s_grade; 

      s_min_idx = j; 

    } 

  } 

 

 

  member_organism_class_array[member_n_population+i] = 

  member_organism_class_array[s_min_idx]; 

 

  member_results_array[member_n_population+i] = 

  member_results_array[s_min_idx]; 
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} 

 

// ---------------------------------------------------- 

// End of 'Population degeneracy prevention algorithm'. 

// ---------------------------------------------------- 

 

Experimental report: 

 

The settings of the Genetic Algorithms that were tried can be viewed in Table 1 

(In a separate document). 

 

4. Short analysis 
 
What we have shown is the following 

 

Let LGGGGG ,...,,,, 4321  represent genes such that: 

 

4.1. 
1G  is a zero initial state in which zero is assigned to all the bits of the gene. 

In the program both random initialization and zero initializations can be 

used. 

 

4.2. The edit distance 1),(Edit_Dist 1 ii GG  and the fitness function for 1iG  is 

better than in iG ,  )(arg)(arg 1 ii GetTGetT  . 

 

4.3. 
LG yields the minimal fitness function.  

 

4.4. By (2.4) the difference in the fitness function that is sufficient for the 

algorithm not to converge to the best “gene” is infinitesimally small. 

4.4 is a bit surprising (and not only as a game of words). 

 

Then GAs need not converge to 
LG  ! 

Obviously the states 01000000……, 0101000000000…., 010101000000000… 

which represent )12(531531311 2...222,222,22,2  k  form such Gs.  
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5. How to run the demo – online publication 
 
The C++ console application files GA.CPP,MSORTIDX.CPP,RAND.CPP, 

MSORTIDX.H,RAND.H have to be included in a new Console Application project 

and should be compiled. 

There are three arguments that the program expect: 

 

5.1. Number of generations. Typical values are between 2000 and 1000000. 

 

5.2. Deciding whether the fitness function is (1.6) or simply (1.4). If this number is 

0 then the fitness function uses a denominator which consists of powers of 4 

as previously mentioned. If not then the fitness function is simply the 

absolute value |Crux - Sum|. 

 

5.3. The third parameter is the number of survivors in each generation or epoch. 

The number of individuals in the population is four times that number. Each 

surviving individual will have at least three offspring. 

 

Program example command line is: GA 1000000 0 80 

To stop the program while running then please press S or s or N or n. 

 
 
 

6. Conclusions 
 
GAs are a stochastic way to optimize a target function that is also known as 
Fitness function. There could be some traps, however, even infinitesimally small 
as the number of bits grow, that can fool the genetic algorithm and cause it to 
converge to genes that are very far in terms of edit distance from the optimal 
ones.  
This article shows the need for a theory that will be able to point out which fitness 
functions can be and which can’t be optimized by genetic algorithms. 
Such a theory is a productive goal in the research of GAs. 
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