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Abstract 

Einstein equation of Gravity has on one side the momentum energy density tensor and on 

the other, Einstein tensor which is derived from Ricci curvature tensor. 

A better theory of gravity will have both sides geometric. 

Another goal should be to describe time as perpendicular unlike in Kerr solution, in order 

to show it is an emergent dimension rather than an ordinary dimension like the other 3. To 

do that we need to use a measure of time that is independent of the choice of coordinates.  

To summarize, this paper has two purposes as follows: first, to show a model of matter as 

merely due to possible but not inevitable geometric conflict, second, to show the way to 

see time as an emergent dimension. The second purpose was not achieved though the 

paper does show new ideas. 
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1. Introduction: Square Field Curvature in positive 

definite metric spaces 
 
A) Ideas 

Deconstructing space time to 3+1 dimension requires time orthogonality. 

If spacetime is homotopic to a single starting event, say "big bang" then maximal proper 

time curves can be drawn between that event and any other event and therefore attach a 

time value to any event in space time. This time then becomes a scalar field. Because 

clock tick is different under local space translations, the scalar field has a significant 

gradient by space.  

The gradient need not be parallel to any geodesic curve 

 The direction in space time of the maximum proper time forms a geodesic curve but not 

necessarily the gradient of the field is parallel to a geodesic curve.  A good example is the 

center and edge of a hollowed ball of mass. Due to General Relativity, the clock ticks in 

the gravitational field of the ball are slower than far from the ball. As a result, max proper 

time geodesic curves from say "big bang" event, must come from outside the ball into the 

ball. The time at the center of the ball is also a geodesic curve but it is in the time direction 

in Schwarzschild coordinates. The vector field of the lines is therefore discontinuous and 

we have a non zero [1] Euler number. 

(Fig. 1)  The line of the max proper time field from "big bang" is discontinuous in the 

middle of a hollowed ball of mass. In microscopic level, the gradient apparently bends on 

the edge where matter exists. 
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Contrary to the absolute maximal proper time from "big bang", most geodesic curves 

usually measure only local maximum proper time. The curves of the global/absolute 

maximum proper time have tangents that are eigenvectors of the metric tensor, 

corresponding to the maximum eigenvalue. Therefore, in geodesic coordinates such that 

the time is parallel to the maximum proper time, the mixed terms of the metric tensor 

vanish. Locally, the separation between space and time works also in metrics such as the 

Kerr metrics and time appears perpendicular to 3D space manifolds along the maximum 

proper time curves. Separation of space and time is important, however, this paper has a 

higher priority motivation, to get an equation that depends only on geometry. To show that 

time is an emergent dimension is secondary in this paper. 

B) Questions – second, emergent time unsolved issue, 

The question is: Can inverted logic work ? By minimizing an action operator  

on three dimensional manifolds, can a degree of freedom yield multiple 

solutions for the metric tensor, such that: 

1) The action can serve as a homotopy [2] parameter. 

2) The action will be invariant under Lorentz - like rotations in the 

    resulting four dimensional manifold 

C) Numerical results 

    A C++ simulation was written and tried on a 40x40x40 grid 

    and yielded an expanding three dimensional domain. 

We would like to describe the curvature of the gradient of the absolute maximum proper 

time from "big bang" scalar field and show its possible relation to Ricci curvature and to 

Einstein's tensor. The idea is that the gradient of the scalar time field of absolute maximum 

proper time from "Big Bang", forms curves that have non vanishing curvature.  
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Intuitive discussion about the second power of curvature of a 

conserving vector field 

So let us begin. We will now define what the Square Field Curvature FC of a vector field 

V  in nR , with positive definite Euclidean geometry, is.The same formalism is easily 

extended to Riemannian geometry. 

 We would like the field V to reduce or increase its differential in directions that are 

perpendicular to the direction of the field. This requirement is also comprehensible when 

the metric tensor of a manifold with coordinates in nR  has only positive eignevalues in 

local orthogonal coordinates and we shall see that the operator that describes Field 

Curvature has quite the same formalism in Riemannian manifolds. We will start with an 

intuitive description of the operator and later give a proof it is the square curvature of the 

vector field. Given two infinitesimally close points in nR , 1q  and hVqq  12  for some 

infinitesimal h , we would like that )1()2( qVqV  will be as parallel as possible to the field 

)1(qV . 

By Pythagoras that can be written as the following problem locally minimize 
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Here V  means the matrix 
j

i

ji
X

V
a




 . 

(Fig. 2) - Field Curvature and its Euclidean geometric meaning – how much the field 

changes in direction perpendicular to itself.  

 

 

The following next figure shows us two curves one on the left for which BE  is zero and 

one on the right for which BE  is positive: 

(Fig. 3)    - Parallel deviation on the right. 
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2. Tensor formalism of the Square Curvature 

As will be discussed, in tensor formalism, derivatives are replaced by covariant derivatives 

and are denoted by semi colon and derivatives by comma. Upper and lower indices 

represent the covariant and contra-variant properties and upper and lower indices sum 

according to Einstein convention so (2) can be written as a tensor density with local 

coordinates in nR . Regarding the metrics square root of the determinant of the metric 

tensor g , so following are tensor densities [3], that yield tensor equations [4], 
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Don’t' confuse t  with maximum proper time. We choose a simpler expression for our 

absolute maximum proper time from "big bang"  , 

 P .                                                                                                            (3A) 

Explanation to the seemingly impossible non geodesic gradient 

Question: Can 


dx

dP
P  be non- tangent to a geodesic curve ? 

1) If there is more than one geodesic curve that connects the "Big Bang" event to 

say event 'e', then obviously P need not be geodesic in a small neighborhood 

of 'e'. 

2) P as a value is not the length of a local coordinate !!! 
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Obviously 0m

mPU . 

The vector mU  describes the direction and intensity of the curvature of the field P  which 

is a change perpendicular to mP . 

From minimum action of 
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 such that R  is the Ricci curvature tensor [5]. [6]. In other words, curvature of the 

gradient of absolute maximum proper time from "Big Bang" (as a possible result of more 

than one geodesic curve) is equivalent to Ricci curvature. 

If that can be true then we can have an equation that is based solely on geometry.  

In any case we have a nice action (without spinors [7] and other fancy mathematical 

technology) of the form: 

2

1

t
VV 


 such that V is a vector field and 

t

1
 is a scalar field. If the definition is in 3 

dimensions, it hints at 4 dimensional Lorentzian metric geometry. 
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U  is units of 
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A rigid proof that SquareCurvature is the square (to the 

second power of) field curvature 

We restrict the proof to the Euclidean case. The square curvature is defined as  
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If V  is a conserving field then  ,, rr VV   and thus 
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Writing the last term in Riemannian geometry is the same field curvature operator that we 

chose. 

 

Geodesic coordinates where the time coordinate is 

parallel to the global/absolute maximum proper time 

We see that 3 dimensions hint at 4 dimensional action. This is done by looking at the 

action (3) in three dimensions and observing the following way to write it, 
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(3.9) 

Where 
g  is the metric tensor in 4 dimensions and 

ijq is in 3. 
ijq  implicitly refers to a 

local submersion [8] where time is locally held constant. 

Can we do the opposite, look at 4 dimensions and reduce the problem to 3 without 

violating the principle of covariance ? 

First, our maximum proper time curves are intrinsic and do not depend on the coordinates.  
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We can therefore agree that the maximum proper time curves are different than ordinary 

geodesic curves on which only local maxima of proper time can be measured. 

We choose to describe (3) on our space-time in our special coordinates. Since the 

direction in space time of the maximum proper time is an eigenvector of the metric tensor 

with the biggest eigenvalue, our metric tensor is of the form presented in (3.9) for which 

the mixed space time terms are zero. Also, 
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We can assume as possible 0P,0P,0P 321  especially if multiple maximum 

proper time curves to the same event 'e' exist. 

So instead of (3) we reduce the action to become three dimensional, 
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This means that on our three dimensional sub-manifolds ("Leaves of a foliation"),  

there is a corresponding action operator that is free of derivative dependence on time. 

Solving the Euler Lagrange equations for the Tweaked Square Curvature and receiving a 

plurality of solutions is indeed a promising direction of research !!! 

 

Unsynchronizability 

Since P  is not constant on the 3 dimensional sub-manifolds perpendicular to the 

global/absolute maximal proper time curves, these manifolds are not synchronizable  

and are therefore not the ideal inflating S(3) i.e. Friedmann-Robertson-Walker.  
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History of the paper's concept of time 

The idea of an absolute time, such as maximum proper time from a common event i.e. 

"big bang" is not new [9], [10] and it appears in Hebrew writing such as the Book of 

Principles by Rabbi Josef Albo 1380-1444. Rabbi Josef Albo wrote about time that can be 

measured by devices and another aspect of time which he termed immeasurable. The 

maximum proper time can't be measured by devices on Earth because due to General 

Relativity, clock ticks are slowed down by the gravitational field.  

 

 

 

 

Euler Lagrange Equations of the SquareCurvature action 

We will not solve the entire system 
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Finally we get the following zero divergence: 
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 where 

W  is obtained from the subtraction of (4.5) from (4.6). 
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