
Massachusetts Institute of Technology 
Physics 8.03 Fall 2004
 

Problem Set 6
 

Due Friday, October 29, 2004 at 4 PM  
 

Reading Assignment 

French pages 230-234. Bekefi & Barrett pages 123-125, 189-213 (review of Maxwell’s eqs.) 213-250, 
366-373. 
Notice: French’s statement on page 231 that high-frequency waves on a string travel with lower 
speed than low-frequency waves, is only correct for beaded strings, not for continuous strings (like 

piano strings). Due to the stiffness in wires/strings, it’s the other way around: the higher the fre
quency, the higher the speed of propagation. Bekefi & Barrett give the correct dispersion relation 

in strings (eq. 2.16). However, their statement that a has the dimension of length is incorrect (apart 
from that, a2 in eq. 2.16 is often called α as I will do in lectures). 

Before you start this assignment, read the following interesting text which is from Crawford, Berke
ley physics course - Waves. 

Surface waves on water 

At equilibrium, the surface of a body of water is flat and horizontal. When a wave is 
present, there are two kinds of restoring forces that tend to flatten the wave crests and 

restore equilibrium: one is gravity, the other is surface tension. For wavelengths of more 

than a few centimeters, gravity dominates. For millimeter wavelengths, surface tension 

dominates. 
Because of the great incompressibility of water, the excess of water that appears in a 

wave crest must flow in from the neighboring trough regions. Individual water drops in 

a water wave therefore undergo a motion that is a combination of longitudinal motion 

(forward and backward) and transverse (up and down) motion. If the wavelength is 
small compared to the equilibrium depth of water, we have what are called deep-water 
waves. Then the individual water droplet in a traveling wave move in circles. A floating 

duck (or a droplet at the surface) undergoes a uniform circular motion with radius equal 
to the amplitude of the harmonic wave and with period equal to that of the wave. On 

the crest of a traveling wave, the duck has its maximum forward velocity; in a trough, 
it has its greatest backward velocity. Water droplets below the surface travel in smaller 
circles; it turns out that the radius of gyration decreases exponentially with depth. The 

motion is negligibly small a few wavelengths below the surface. 
The dispersion relation for deep-water waves is given approximately by 

ω2 = gk + 
S

k3 (33)
ρ 

where ρ ≈ 1.0 gm/cm3 and S ≈ 72 dyne/cm (surface tension) for water; g = 980 cm/sec2 . 
We shall let you show that when g and (S/ρ)k2 are equal so that gravity and surface 
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tension make equal contributions to the return force per unit displacement per unit 
mass (i.e., to ω2), then the phase and group velocities are equal. You can show that 
this occurs at a wavelength λ = 1.70 cm. The phase and group velocities are then both 

23 cm/sec. For wavelengths much less than 1.7 cm, surface tension dominates; then the 

group velocity is 1.5 times the phase velocity. For wavelengths much greater than 1.7 

cm, gravity dominates; then the group velocity is half the phase velocity. 

In Table 6.1 we give wave parameters for wavelengths ranging from 1 mm (such as 
can be excited by a tuning fork driving a styrofoam cup full of water) up to 64 meters 
(very long ocean waves). 

Table 6.1 Deep-water waves 
λ (cm) ν (cps) vφ (cm/sec) vg (cm/sec) vg/vφ 

0.10 675.0 67.5 101.4 1.50 

0.25 172.0 43.0 63.7 1.48 

0.50 62.5 31.2 44.4 1.42 

1.0 24.7 24.7 30.7 1.24 

1.7 13.6 23.1 23.1 1.00 

2.0 11.6 23.2 21.4 0.92 

4.0 6.80 27.2 17.8 0.65 

8.0 4.52 36.2 19.6 0.54 

16.0 3.14 50.3 25.8 0.51 

32.0 2.22 71.0 35.8 0.50 

100.0 1.25 125.0 62.5 0.50 

200.0 0.884 177.0 88.5 0.50 

400.0 0.625 250.0 125.0 0.50 

800.0 0.442 354.0 177.0 0.50 

1600.0 0.313 500.0 250.0 0.50 

3200.0 0.221 708.0 354.0 0.50 

6400.0 0.156 1000.0 500.0 0.50 

Application 

Here is an example that makes use of Table 6.1. Suppose you are having a picnic at 
the beach. Someone wonders about the wavelength of waves in the open ocean twenty 

or thirty miles out from the coast. You tell them to wait a minute you’ll tell them 

the wavelength. You take out your watch and time the waves per minute, i.e., one per 
five seconds: ν = 0.2 cps. The weather has been constant for several days, so you can 

assume that the waves are at steady state (aside from local winds that do not affect the 

big ocean swells). The frequency is thus 0.2 cps at sea, as well as at your beach. (Of 
course the wavelength is different, because the waves breaking on your beach are not 
deep-water waves. The wavelength depends on the water depth at your local beach. The 

steady-state driving frequency does not.) 

According to the table, the wavelength of the waves in the open ocean should be about 
40 meters. 
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How far have the wave crests, now breaking on your beach, traveled in the last hour? 

If most of the time was spent traveling in deep water, then according to Table 6.1 the 

phase velocity has been about 8 meters/sec, i.e., about 29,000 meters per hour. Thus 
the waves have traveled about 30 km (20 miles) in the last hour, and since the weather 
has been constant for many hours you should feel confident that your estimate of wave
length in the open ocean is a good one. 
If you are not at the beach but are at a seismograph within ten or twenty miles of the 

beach, you can answer the same question. 

Problem 6.1 − Phase and group velocity in your bathtub 

(a) Prove that for wavelength much less than 1.7 cm, the group velocity is 1.5 times the phase 

velocity (use eq. 33). 

(b) Prove that for wavelengths much greater than 1.7 cm, the group velocity is half the phase 

velocity. 

Home Experiment (optional) 
Water wave packets. The best way to understand the difference between phase and 

group velocities is to make water wave packets. To make expanding circular wave pack
ets having dominant wavelength 3 or 4 cm or longer, throw a big rock in a pond or pool. 
To make straight waves with wavelengths of several centimeters, float a stick across the 

end of a bathtub or a large pan of water. Give the stick about two swift vertical pushes 
with your hand. After some practice, you should see that for these packets the phase 

velocity is greater than the group velocity. (See Table 6.1) You will see little wavelets 
grow from zero at the rear end of the packet, travel through the packet, and disappear 
at the front. (It takes practice; the waves travel rather fast.) Another good method is 
to put a board at the end of a bathtub and tap the board. 
To make millimeter-wavelength waves (surface tension waves), use an eye dropper full 
of water. Squeeze out one drop and let it fall on your pan or tub of water. First let the 

drop fall from a height of only a few millimeters. This gives dominant wavelengths of 
only a few millimeters. To see that these waves really are due to surface tension, add 

some soap to the water and repeat the experiment. You should notice a decrease in the 

group velocity when you add the soap. 

Problem 6.2 − Shallow-water waves (Home experiment) 
√ 

Make your own shallow-water waves for which the phase velocity v = gh. Take a square pan a 

foot or two long. Fill it with water to a depth of about 1/2 or 1 cm. Give the pan a quick nudge 

(or lift one end and drop it suddenly). You will create two traveling wave packets, one at the near 
end and one at the far end, travelling in opposite directions. 

(a) Measure the velocity by timing one of the waves for as many pan lengths as you can (about 
four?). Report your findings. 

√ 
(b) How well does your result agree with v = gh? 
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As the depth of the water increases, you will finally get to the point where your waves change to 

deep-water waves. 

In problem 6.3, you will derive a dispersion relation (somewhat simplified) for deep-water waves. 
We assume here λ » 1 cm so that surface tension effects can be ignored. 

Make sure you compare your result with that of eq. (33) above. 

Problem 6.3 (French 7-20) − Why are deep-water waves dispersive? 

Consider a U-tube of uniform cross section with two vertical arms. Let the total length of the liquid 

column be l. Imagine the liquid to be oscillating back and forth, so that at any instant the levels 
in the side are at ±y with respect to the equilibrium level, and all the liquid has the speed dy/dt. 

(a) Write down an expression for the potential energy plus kinetic energy of the liquid, and hence  
show that the period of oscillation is π 2l/g. 

(b) Imagine that a succession of such tubes can be used to define a succession of crests and 

troughs as in a water wave (see the diagram). Taking the result of (a), and the condition 

λ ≈ 2l implied by this analogy, deduce that the speed of waves on water is something like 

(gλ)1/2/π. (Assume that only a small fraction of the liquid is in the vertical arms of the 

U-tube.) 

(c) Use the exact result, v = (gλ/2π)1/2, to calculate the speed of waves of wavelength 500 m in 

the ocean. 

Problem 6.4 − Energy in waves 

The energy Eλ stored in one wavelength (λ) of a vibrating string (standing wave) is: 

TA2π2 

Eλ = 
λ 

T is the tension in the string and A is the amplitude of the anti-nodes. 

(a) Prove that this result is equivalent to eq. 7-38 in French (page 242). 

If we, for simplicity, approximate a sine-wave by triangles (see figures) then we can easily calculate
 

how much energy it takes to give the string this triangular shape.
 
You pick up the string of length L in the middle M (see figure above) and move this point a distance
 

A up. Assume that in doing so the tension T in the string does not change (A « L).
 

(b) Calculate the amount of work that you have to do. 
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Now divide the same string into n equal sections, each of length L/n, as in the figure below. Move 

the midpoints of each of the n sections a distance An. 

(c) Calculate how much work you have to do to set up this configuration (calculate the work for 
one section only and multiply by n). 

This simple calculation gives you the amount of energy stored in the string for given T,  L,  n,  and 

An. If you had taken a sinusoidal shape for the string instead of a triangular shape, the energy 

stored would have been larger. 

(d) By what factor? 

th 2Notice that the energy in the n mode is proportional to n (and thus proportional to ω2 ); of n

course, it is also proportional to the square of the amplitude (A2 ).n

Problem 6.5 − Energy in travelling waves on a string 

A string of tension T and mass per unit length µ propagates waves. Let the amplitude of the waves 
be A. 

(a) Try to reason, using the idea that a standing wave results from two travelling waves, that the 

kinetic energy and the potential energy in travelling waves are equal. 

(b) What is the kinetic and potential energy per unit length of the string? 

Problem 6.6 (Bekefi & Barrett 3.3) − Electromagnetic plane waves 

A magnetic field of a uniform plane wave is given by: 

Bk (kr, t) =  Boyf(kk · kr − ωt + φ)ŷ 

where Bo is a scalar constant, and f(kk · kr − ωt) is any function of the argument kk · kr − ωt. The  

vectors kk and kr are kxx̂ + ky ŷ + kz ẑ and xx̂ + yŷ + zẑ, respectively. 

(a) Give all the conditions imposed on Ek (kr, t) and  kk by Maxwell’s equations and the wave equa
tions. 

(b) If kz = 0, give an expression for Ek (kr, t) similar to Bk (kr, t). 
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