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SOLUTIONS
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Problem 1.1 (Estimates and Uncertainties – Ohanian Question 1.1)

For the first two objects, I estimated the error by using half the smallest division on my
wooden ruler, 0.5 mm. For the last two objects, I used a metal tape measure which can
expand and contract with changing temperature, just as the wooden ruler can with changing
humidity. For large distances, such as a desk, it can produce a noticeable error, which I
estimated at ±2 mm.

Object Estimate by Eye Measured Value Comments
Mug (height) 22 cm 15.75 ± 0.05 cm I didn’t start off too hot
CD Case 15 cm 14.20 ± 0.05 cm a bit better
Desk 1.6 m 1.524 ± 0.002 m not bad for something so big
Ruler 30.5 cm 30.48 ± 0.05 cm I am the greatest!

Problem 1.2 (Fundamental Units – Ohanian Question 1.14)

As Ohanian says, “position, time, and mass give a complete description of the behavior and
the attributes of an ideal particle.” Therefore, we must have units of each of these ([L], [T],
and [M]) in some combination in any system of units that we use.

If we take length, mass, and density as our fundamental units, we have

[length] → [L] , [mass] → [M] , [density] → [M]
[L]3

.

As you can see, we have no units of time [T] so we cannot take these as the three fundamental
units. If, however, we take length, mass, and speed, we have

[length] → [L] , [mass] → [M] , [speed] → [L]
[T]

.

Here, we have all the necessary units, and this is a valid choice for the three fundamental
units. It is important to remember that we must be able to “separate” the fundamental units
from each other. For example, mass and speed alone contain all the necessary units but there
would be no way to separate [L] from [T] with just these two. By having length, mass, and
speed, we can extract each fundamental unit on its own (for example, by dividing length by
speed to get [T]).

Problem 1.3 (Thickness of a Sheet of Paper)

a) Thickness = 10.0 mm

b) Absolute uncertainty = ±0.5 mm

c) Relative uncertainty = absolute uncertainty
measurement = 0.5 mm

10.0 mm = 5%

d) There’s 85 pages, so the thickness of one page is 10.0±0.5 mm
85 =118 ± 6 µm.

e) Absolute uncertainty = 6 µm
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f) The relative uncertainty is unchanged – 5%.

g) Different students will apply different amounts of pressure when measuring the thickness.
Another factor is the humidity of the room in which the measurement is done, as this
will affect the thickness of the paper. Also, there is a possibility that the paper is slightly
different from book to book.

Problem 1.4 (Relative Uncertainties)

The relative uncertainty is the absolute uncertainty divided by the value of the measure-
ment. Let’s pick the antelope as our bone. It has a measured thickness of 18.3 mm with an
uncertainty of 1.0 mm; therefore, its relative uncertainty is

1.0 mm
18.3 mm

= 5.5%

The student’s length (using Zach from the 10 AM lecture) was 183.2 cm with an uncertainty
of 0.1 cm. The absolute uncertainties have roughly the same value (in the case of the antelope,
it’s exactly the same) in both cases. However, the relative uncertainty in Zach’s length is

0.1 cm
183.2 cm

= 0.055%

Why are the two relative uncertainties so very different? Because Zach is much longer than
the antelope’s femur is thick. They both have the same absolute uncertainty because they
both come from the same source, namely, human error in “eye-balling” a ruler or meter stick.
The relative uncertainties, however, are two orders of magnitude different!

Problem 1.5 (Distant Quasar – Ohanian Problem 1.8)

To figure out the distance on a map, all you need to do is multiply the actual distance
(12.4 × 109 ly) by the scale of the map (1 : 1.5 × 1020).

(actual distance) = 12.4 × 109 ly · 9.46 × 1015 m
1 ly

= 1.17 × 1026 m

(map distance) = (actual distance) · (scale)

= 1.17 × 1026 m · 1
1.5 × 1020

= 7.82 × 105 m = 782 km = 486 miles
= roughly the distance between Cambridge, MA and

Richmond, VA

Problem 1.6 (Distances on Earth – Ohanian Problem 1.10)

r
d

r Equator

Pole

s

North

φ=π/2

The distance from the pole to the equator measured along the sur-
face of the earth is the length of the arc s in the figure. An easy
way to remember how to compute arclength is to realize that the
ratio of the arclength s to the whole circumference is the same as
the ratio of the subtended angle φ to 2π.

s
2πr

=
φ

2π

s = rφ = 6.37 × 106 m · π

2
= 1.00 × 107 m = 6220 miles

The distance d along a straight line is given by the Pythagorean theorem.

d = r
√

2 = 9.01 × 106 m = 5600 miles
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Problem 1.7 (Atoms in your Body – Ohanian Problem 1.26)

Let’s use oxygen (O) as an example. First, figure out how many grams.

73 kg × 65% = 47.45 kg = 47450 g

Then, we divide by the atomic weight (the number of grams per mole) and multiply by
Avogadro’s number (the number of atoms per mole).

47450 g · 1 mole
15.994 g

· 6.02214 × 1023 atoms
1 mole

= 1.78661 × 1027 atoms

Repeat this for every element, and add to get the total.

Element Percentage → Grams × NA
atomic weight = # atoms

O 65% → 47450 g × 6.022×1023 atoms
15.994 g = 1.78661×1027 atoms

C 18.5% → 13050 g × 6.022×1023 atoms
12.011 g = 6.54308×1026 atoms

H 9.5% → 6935 g × 6.022×1023 atoms
1.00794 g = 4.14345×1027 atoms

N 3.3% → 2409 g × 6.022×1023 atoms
14.0067 g = 1.03574×1026 atoms

Ca 1.5% → 1095 g × 6.022×1023 atoms
40.08 g = 1.64527×1025 atoms

P 1% → 730 g × 6.022×1023 atoms
30.97376 g = 1.41932×1025 atoms

TOTAL: 6.71859×1027 atoms

The answer should have the same precision as the original information – 2 significant digits.
So the total number of atoms is 6.7 × 1027.

Problem 1.8 (Astronomical Distances – Ohanian Problem 1.29)
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a) We can use the formula from Problem 1.5 (with φ in radians).

s = rφ → 1 AU = 1 pc · 1′′ · 1′

60′′
· 1◦

60′
· π

180◦
→ 1 pc = 206,265 AU

b) First we need to express ly in meters and then we can use the
information given by Ohanian.

1 ly = 3.00 × 108 m/s · 86400 s/day · 365 days = 9.46 × 1015 m

→ 1 pc = 206, 265AU · 1.496 × 1011 m
1 AU

· 1 ly
9.46 × 1015 m

= 3.258 ly

c) 1 pc = 3.086 × 1016 m 1 ly = 9.46 × 1015 m

Problem 1.9 (Mean Density of Stars – Ohanian Problems 1.37 and 1.38)

1.37 For density, we use the Greek letter rho (ρ).

ρ =
mass

volume
=

M
4
3πr3

=
2.0 × 1030 kg

4
3π(7.0 × 108 m)3

· 1000 g
1 kg

·
(

1 m
100 cm

)3

= 1.4 g/cm3

1.38 Same thing.

ρ =
2.0 × 1030 kg

4
3π(20 × 103 m)3

·1000 g
1 kg

·
(

1 m
100 cm

)3

= 6.0×1013 g
cm3

·1 tonne
106 g

= 6.0 × 107 tonne/cm3
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Problem 1.10 (Position, Velocity, and Acceleration)
a) x(t) = 16 − 12t + 2t2 (see plot)

b) By differentiating, v(t) = −12 + 4t (see plot)

c) Another differentiation yields a(t) = 4 (see plot)

d) Using the equation in part b):
v(0) = −12 m/s, v(2) = −4 m/s,
v(4) = 4 m/s

e) Using the equation in part c): a(0) = 4 m/s2,
a(2) = 4 m/s2, a(4) = 4 m/s2

f) Set v(t) = −12 + 4t = 0 to find that t = 3 s.
Now, plug this t into the equation for x(t) to
find the position of the object when the velocity
is 0. To summarize x(3) = −2 m, v(3) =
0 m/s, and of course a(3) = 4 m/s2.

g) The average velocity between two times is de-
fined as

v̄t1,t2
≡ x(t2) − x(t1)

t2 − t1

→ v̄−1,3 =
x(3) − x(−1)

3 − (−1)
=

−2 − 30
4

= −8 m/s

h) We use the same formula

v̄0,6 =
x(6) − x(0)

6 − 0
=

16 − 16
6

= 0 m/s

i) The average speed s is the total distance trav-
eled over the time taken. The total distance is
found by adding up each one-way segment of
the complete journey. Looking at the plot, we
can see that the object traveled from x = 16 m
to x = −2 m and back to x = 16 m (this is
why plots are useful). The total distance is 36
m and the time taken is 6 s. Therefore, the
average speed is s = (36 m)/(6 s) = 6 m/s.
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j) What does it mean to reverse direction? Of course, it means that you’re going one way,
and then you turn around and go the other way. If you’re going in the negative direction,
you then start going in the positive direction and vice versa. In other words, your velocity
changes sign. The point at which this happens is at zero (this is an important concept).
You can also think about it in terms of the calculus. If you reverse direction, then your
position will be a local minimum or maximum at that point. To find where this happens,
you take the derivative of position and set it equal to zero. This is exactly the same as
setting velocity equal to zero since velocity is the derivative of position!
¿From part f), we know that v(3) = 0 so the object reverses direction at t = 3 s.

4



Problem 1.11 (Car Crash and Seat Belts – Ohanian Problem 2.35)

This is a tough problem because the answer requires many steps, and at the end it is essential
to ask the all-important question: “Does my answer make sense?”

First of all, what exactly does it mean to crash into something? It means that two objects
(e.g., a passenger and a dashboard) come into contact, i.e., that their positions are equal at
the same time. This is the first step – describing the position of each object during the period
of deceleration.

We know that for uniform acceleration,

x(t) = x0 + v0t +
1
2
at2

and now we must figure out what x0, v0, and a are for the passenger and for the dashboard.

We need to set up a coordinate system. Imagine freezing time right as the car begins to
crash. We’ll put our origin at the position of the passenger. His initial conditions are x0 = 0
and v0 = 50 km/h = 14 m/s. The dashboard is 0.6 m in front of the passenger and has
initial conditions x0 = xsep = 0.6 m and v0 = 14 m/s. What about acceleration1? Since the
dashboard is attached to the car, it will accelerate uniformly at a = −200 m/s2, but, since
the passenger isn’t wearing a seat belt and therefore isn’t connected to the car, he experiences
no acceleration as the car begins to crash; he “flies out of his seat.” He of course accelerates
quite quickly when he hits the dashboard. Until then, he continues to travel forward with
velocity v0.

The equations of position for the passenger (p) and dashboard (d) are

xp(t) = 0 + v0 · t +
1
2
· 0 · t2 = v0 · t

xd(t) = xsep + v0 · t +
1
2
· (−a) · t2

Okay, so we’ve described the positions, but we need to keep in mind that these equations are
only valid during the period of uniform acceleration, i.e., from when the car starts accelerating
until the time it comes to rest.

We have position as a function of time x(t), and we can take a derivative to get velocity as
a function of time v(t). So, let’s solve for the specific time, tbang when the position of the
passenger is equal to the position of the dashboard. Then we can plug that into our equations
for v(t) and find the (almost) final answer.

xp(tbang) = xd(tbang)

v0 · tbang = xsep + v0 · tbang − 1
2
· a · (tbang)2

0 = xsep − 1
2
· a · (tbang)2

tbang =
√

2
xsep

a
=

√
2

0.6 m
200 m/s2

1It may sound awkward at first to speak of something crashing into a wall as “accelerating,” but this is the
language of physics. Remember, to “accelerate” merely means to change velocity, whether it be increasing velocity or
decreasing velocity. Non-physicists generally use the term “decelerate” to indicate that an object’s speed is decreasing.
For example, suppose the car were traveling backward with velocity v = −14 m/s and then crashed until its velocity
were v = 0 m/s. Strictly speaking, it’s velocity increased, but because its speed decreased there might be confusion
over whether to call it an “acceleration” or a “deceleration.” We overcome the confusion in 8.01 by calling ALL
changes in velocity “accelerations.”
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tbang = 0.077 s

Notice that I didn’t plug in any numbers until the last step. This is very important.

To find the speed of the passenger and the dashboard as functions of time, we simply take
the derivatives of xp(t) and xd(t) with respect to t.

vp(t) =
dxp(t)

dt
=

d

dt
v0 · t = v0

vd(t) =
dxd(t)

dt
=

d

dt
(xsep + v0 · t − 1

2
· a · t2) = v0 − a · t

The relative velocity of the passenger to the dashboard is the difference between the two

vrel(t) = vp(t) − vd(t)
= v0 − (v0 − a · t)
= a · t

→ vrel(tbang) = 200 m/s2 · 0.077 s
vrel(tbang) = 15.4 m/s

Does this answer make sense?? NO! Why not? Because the car and passenger were
originally traveling at 14 m/s. During the collision, the passenger continues to travel at 14
m/s, but the automobile uniformly accelerates on its way to a stop. So the maximum relative
velocity could be at most 14 m/s. Anything higher than this would indicate that the car has
“bounced back” which we know does not happen. (Remember that our original equations
were only valid for the period of uniform acceleration. If we continue to use them after the
car has come to a stop, we are implying that it begins to accelerate away from the wall!)

We realize that the car must have come to a stop before the passenger hit the dashboard (in
fact, it stopped at t = 0.069 s). The relative velocity is therefore vrel = 14 m/s.

Problem 1.12 (Brain Teaser – Returning to the same Point on Earth)

There’s not much methodology to brain teasers, but one helpful hint is to consider “special
circumstances.” In this case, we’re looking for special points on the globe. Good starting
points would be the North and South Poles and the Equator.

The North Pole is one point that meets the stated conditions — if you walk south from it a
certain distance d, walk in a circle for however long you want, and then walk north the same
distance d, you’ll be back at the North Pole. Great.

The other points that meet the condition have to do with special circles around the South
Pole that have the following property: their circumferences are 10/n km where n = 1, 2, 3, . . .

Let circle1 be the circle with 10 km circumference. After walking east for 10 km, you’re back
where you started. Let circle2 be the circle with 10/2 = 5 km circumference. After walking
10 km east, you’re still back where you started. And so on for n = any positive integer.

Each of these circles will be the second leg of the journey. The starting point of the journey
will be any point 10 km north of where the special circle lies. (These starting points also form
a circle.) Then the first leg would be to travel 10 km south to the special circle, the second
leg would be to walk east around the special circle for 10 km arriving back where the second
leg started, and the third leg would be to walk north for 10 km (retracing exactly the steps
of the first leg) to arrive back at the starting point.
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Assuming the Earth is a perfect sphere, we can use the figure on
the left to figure out the latitude lcirc1 of the circle of circumference
10 km. From the figure, we see that this leads to the condition
2πr = 10 km, where r = 6357 km · sin(90◦ − lcirc1). Solving for
lcirc1 , we find that circle1 is at lcirc1 = 89◦59′08′′ South. (The error
introduced by our assumption that the Earth is a perfect sphere is
less than 1′′.)
Now we need to find the latitude lstart1 of the circle 10 km north of
this. From the figure and what we know of arclength, we find that

10 km
2π · 6357 km

=
φ

360◦
→ φ = 5′24′′

The latitude lstart1 of the starting point is then lcirc1 − φ.

lstart1 = 89◦53′44′′ South

This procedure can be repeated for the second circle of circumference 5 km to find lstart2 =
89◦54′10′′ South, and so on. There are an infinite number of these circles, each with an
infinite number of points.

Problem 1.13 (Human Femur)

a) I measured d to be 1.6± 0.2 cm and l to be 24.5± 0.5 cm. The errors are large because
I was not very confident in my ability to measure the image accurately. The ratio is
d/l = 1.6/24.5 = 0.065 To get the uncertainty when we’re dividing measured quantities,
we can use one of two methods which are equivalent. Remember that these are simplified
methods that we use in 8.01; later in your MIT career, you’ll probably take more formal
courses that will teach how to arrive at a final uncertainty which is derived from several
quantities.
Method One: Figure out the maximum that the computed value can be, i.e., add the
error in the numerator, and subtract the error in the denominator:

1.6 + 0.2 cm
24.5 − 0.5 cm

=
1.8 cm
24.0 cm

= 0.075

Then subtract the computed value without uncertainties from this to get the range of
uncertainty:

0.075 − 1.6 cm
24.5 cm

= 0.075 − 0.065 = 0.010

Method Two: When multiplying or dividing measured quantities, add the relative un-
certainties of each quantity to get the total relative uncertainty:

0.2 cm
1.6 cm

+
0.5 cm
24.5 cm

= 12.5% + 2.0% = 14.5%

Multiply this by the computed value without uncertainties to get the total absolute
uncertainty:

14.5% · 1.6
24.5

= 14.5% · 0.065 = 0.010

So the final answer is d/l = 0.065 ± 0.010.

b) To average we just add up all the quantities and divide by the total number of quantities.
When adding or subtracting numbers with uncertainties attached, we add the absolute
uncertainties together (at least, we do this in 8.01).

d/lavg =
(0.063 ± 0.009) + (0.092 ± 0.007) + . . . + (0.085 ± 0.004)
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=
0.611 ± 0.039

7
d/lavg = 0.087 ± 0.006

c) The following interesting note is from Professor Bernie Burke.

Among mammals, d/l appears to be approximately constant. This is not
what one would expect from Galileo Galilei’s reasoning as discussed in lec-
tures.

This follows from a correct and complete analysis of the scaling for failure
of columns. Columns can fail two ways: by having a load so great that the
material yields (this is what we evaluated in lectures), or by having a load
so great that the column buckles (not considered by Galileo).

The point at which the material yields is described by the yield modulus.
The yield modulus for well-aged concrete is about 2000 pounds per square
inch, and it may yield (i.e. crumble) sooner if it has only been poured for
a few days; mild steel is 25 times stronger, and there are special alloys that
have a yield modulus 50 times that of concrete.

Another form of columnar failure, on the other hand, is determined by the
elastic modulus, sometimes called Young’s modulus. Imagine a thin metal
column under a load. Theoretically, if it were perfectly vertical, it could
sustain a load up to the yield point. If it is not in stable equilibrium, however,
any sideways displacement, no matter how small, will develop into a bend,
and the column acts like a spring. Try this by pushing down on a vertical
plastic ruler; you will see the bending, and you will feel the spring action.
The greater the load, the more the sideways bend. If the column is too
slender, the bend will increase uncontrollably, and the column will buckle.
The great mathematician Leonard Euler tackled this problem. We suggest
you look up on the web “Euler Buckling”.

It is unclear why the value of d/l is significantly lower for humans than for the aver-
age four-legged mammal. Apparently, we are still far enough from the danger zone of
buckling that it does not pose a problem.
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