
How Stepper Motors Work 
Stepper motors consist of a permanent magnet rotating shaft, called the rotor, and 
electromagnets on the stationary portion that surrounds the motor, called the stator. 
Figure 1 illustrates one complete rotation of a stepper motor. At position 1, we can see 
that the rotor is beginning at the upper electromagnet, which is currently active (has 
voltage applied to it). To move the rotor clockwise (CW), the upper electromagnet is 
deactivated and the right electromagnet is activated, causing the rotor to move 90 degrees 
CW, aligning itself with the active magnet. This process is repeated in the same manner 
at the south and west electromagnets until we once again reach the starting position. 

 
 

Figure 1 

In the above example, we used a motor with a resolution of 90 degrees or demonstration 
purposes. In reality, this would not be a very practical motor for most applications. The 
average stepper motor's resolution -- the amount of degrees rotated per pulse -- is much 
higher than this. For example, a motor with a resolution of 5 degrees would move its 
rotor 5 degrees per step, thereby requiring 72 pulses (steps) to complete a full 360 degree 
rotation. 

You may double the resolution of some motors by a process known as "half-stepping". 
Instead of switching the next electromagnet in the rotation on one at a time, with half 



stepping you turn on both electromagnets, causing an equal attraction between, thereby 
doubling the resolution. As you can see in Figure 2, in the first position only the upper 
electromagnet is active, and the rotor is drawn completely to it. In position 2, both the top 
and right electromagnets are active, causing the rotor to position itself between the two 
active poles. Finally, in position 3, the top magnet is deactivated and the rotor is drawn 
all the way right. This process can then be repeated for the entire rotation.  

 
Figure 2 

There are several types of stepper motors. 4-wire stepper motors contain only two 
electromagnets, however the operation is more complicated than those with three or four 
magnets, because the driving circuit must be able to reverse the current after each step. 
For our purposes, we will be using a 6-wire motor. 

Unlike our example motors which rotated 90 degrees per step, real-world motors employ 
a series of mini-poles on the stator and rotor to increase resolution. Although this may 
seem to add more complexity to the process of driving the motors, the operation is 
identical to the simple 90 degree motor we used in our example. An example of a 
multipole motor can be seen in Figure 3. In position 1, the north pole of the rotor's 
perminant magnet is aligned with the south pole of the stator's electromagnet. Note that 
multiple positions are alligned at once. In position 2, the upper electromagnet is 
deactivated and the next one to its immediate left is activated, causing the rotor to rotate a 
precise amount of degrees. In this example, after eight steps the sequence repeats.  



 
 

Figure 3 

The specific stepper motor we are using for our experiments (ST-02: 5VDC, 5 degrees 
per step) has 6 wires coming out of the casing. If we follow Figure 5, the electrical 
equivalent of the stepper motor, we can see that 3 wires go to each half of the coils, and 
that the coil windings are connected in pairs. This is true for all four-phase stepper 
motors. 



 
 

Figure 5 

However, if you do not have an equivalent diagram for the motor you want to use, you 
can make a resistance chart to decipher the mystery connections. There is a 13 ohm 
reistance between the center-tap wire and each end lead, and 26 ohms between the two 
end leads. Wires originating from seperate coils are not connected, and therefore would 
not read on the ohm meter. 

First Stepper Circuit 
Figure 4 is the schematic of our first test circuit. The PIC's output lines are first buffered 
by a 4050 hex buffer chip, and are then connected to an NPN transistor. The transistor 
used, TIP120, is actually a NPN Darlington (it is shown as a standard NPN). The 
TIP120's act like switches, activating one stepper motor coil at a time. 



 
 

Figure 4 

Due to a inductive surge created when a coil is toggled, a standard 1N4001 diode is 
usually placed across each transistor as shown in the figure, providing a safe way of 
dispersing the reverse current without damaging the transistor. Sometimes called a 
snubbing diode. The TIP120 transistors do not need an external snubbing diode 
becasue they have a built in diode. So the diodes shown in the drawing are the internal 
diodes in the TIP120 transistors. 

The simplest way to operate a stepper motor with a PIC is with the full step pattern 
shown in Table 1. Each part of the sequence turns on only one transistor at a time, one 
after the other. After the sequence is completed, it repeats infinitly until power is 
removed.  

Q1  Q2  Q3  Q4  

+  -  -  -  

-  +  -  -  

-  -  +  -  

-  -  -  +  
 

Table 1 

I purposly made this first program as small as possible, simply to demonstrate how easy it 
is to control a stepper motor. Also note the use of high and low commands to control the 



output lines, rather than peek and poke routines. For our purposes, high and low are 
sufficent. 

Listing 1 

' First stepper motor controller program 
' Rotates motor at set speed forever 

Symbol delay = B0  
delay = 25  
 
loop: 
high 0  
pause delay  
low 0  
high 1  
pause delay  
low 1  
high 2  
pause delay  
low 2  
high 3  
pause delay  
low 3  
goto loop  

' use b0 as the delay variable 
' set the delay to 25 ms 
 
 
' turn on Q1 
' wait 25 ms 
' turn off Q1 
' turn on Q2 
' wait 25 ms 
' turn off Q2 
' turn on Q3 
' wait 25 ms 
' turn off Q3 
' turn on Q4 
' wait 25 ms 
' turn off Q4 
' forever  

 
 



Listing 1 

Second Basic Program 
The first program was fine for demonstrating how to control a stepper motor with a PIC 
Micro, but was severely limited to the one mode of operation preprogrammed into it. In 
this next program, we will make the program controllable by external user input in the 
form of four switches: SW1 will incrementaly increase the delay variable, thereby 
slowing the rotation of the motor. SW2 does the opposite. SW3 halts all operation while 
the switch is pressed. SW4 reverses direction of the motor (CW to CCW or vice-versa) 
while it is closed (pressed). 

listing 2 

' Second stepper motor controller program 
' Responds to user input by changing speed or direction 

Symbol delay = B0  
delay = 100  
 
forward:  
high 0  
pause delay  
low 0  
high 1  
pause delay  
low 1  
high 2  
pause delay  
low 2  
high 3  
pause delay  
low 3  
goto check  
 
reverse:  
high 3  
pause delay  
low 3  
high 2  
pause delay  
low 2  
high 1  
pause delay  
low 1  



high 0  
pause delay  
low 0  
goto check  
 
check:  
if pin4 = 0 then timeup 
if pin5 = 0 then timedn 
if pin6 = 0 then halt 
if pin7 = 0 then reverse 
goto forward  
 
timeup:  
delay = delay + 5  
pause 50  
if delay > 250 then max 
if pin4 = 0 then timeup 
goto check  
 
timedn:  
delay = delay - 5  
pause 50  
if delay <20 then min 
if pin5 = 0 then timedn 
goto check  
 
halt:  
if pin6 = 0 then halt 
goto check  
 
max:  
delay = 245  
goto check  
 
min:  
delay = 25  
goto check  

' use b0 as the delay variable 
' delay will begin at 100 ms 
 
 
' turn on Q1 
' wait for delay ms 
' turn off Q1 
' turn on Q2 



' wait for delay ms 
' turn off Q2 
' turn on Q3 
' wait for delay ms 
' turn off Q3 
' turn on Q4 
' wait for delay ms 
' turn off Q4 
' check the status of switches 
 
 
' turn on Q4 
' wait for delay ms 
' turn off Q4 
' turn on Q3 
' wait for delay ms 
' turn off Q3 
' turn on Q2 
' wait for delay ms 
' turn off Q2 
' turn on Q1 
' wait for delay ms 
' turn off Q1 
' check the status of switches 
 
 
 
 
 
 
' if nothing pressed, continue 
 
 
' increase delay by 5 ms 
' pause for 50 ms 
 
 
' check switches again 
 
 
' decrease delay by 5 ms 
' pause for 50 ms 
 
 
' check switches again 
 



 
 
'check switches again 
 
 
' cap the delay at 245 ms 
' check switches again 
 
 
' limit the delay to 25 ms 
' go back and check switches  

 
 

End Listing 2 

As you can see by looking at the schematic (Figure 7), the "switches" used in this circuit 
are pieces of jumper wire on a breadboard. The inputs (B0-B3) are kept high via Vcc 
through a 10K resistor. Theses switches are activated by grounding them via another 
piece of jumper wire. 

 
 

Figure 7 



A note on the previous two listings: the 
minimum delay used in the programs was 
25 ms. Depending on the clock speed of 
your crystal, 25 ms may be either too fast 
or too slow for the rotor to move. If you 
are having problems getting these 
programs to work, this is a likelyHalf 
Stepping 
As previously stated, half-stepping doubles the resolution of the motor. In our case, we 
are using a motor with a 5 degree / per step resolution, requiring 72 steps to complete one 
rotation. By half stepping, we could double this to 2.5 degrees / pulse, requiring 144 steps 
to complete one rotation. Table 2 shows the step pattern. 

Step  Q1  Q2  Q3  Q4  

1  +  -  -  -  

2  +  +  -  -  

3  -  +  -  -  

4  -  +  +  -  

5  -  -  +  -  

6  -  -  +  +  

7  -  -  -  +  

8  +  -  -  +  
Table 2 

There are two ways in which you could impliment half-stepping in a PIC. One way 
would be to drive it directly, using the two previous listings, but replacing the high/low 
commands with the pins that corrispond to each step. The other (and easier) way would 
be to use a UCN 5804 Stepper Motor IC in conjunction with the PIC. 

 culprit (further troubleshooting information). 

 



The UCN 5804 Stepper Motor IC 
By using an external stepper motor controller, such as the UCN 5804, you can simplify 
your programs and control as many motors as you have outputs via an array of UCN 
5804's. Not only does it allow for the control of more motors, but more importantly, it 
simplifies the process. You now only have to output the pulse of your desired speed. 
Additionaly, you can switch between full and half stepping in real time via a switch on 
the UCN 5804 (or you may have the PIC control it), as well as reverse direction. A pinout 
for the UCN804 is shown in Figure 8. 

 
 

Figure 8 

The schematic we will build to use this chip is shown in Figure 9. Since we are using a 
5V stepper motor, we will be powering the UCN 5804 with a 9V wall transformer. You 
cannot use 6V, due to the draw of the motor. The UCN 5804 can support voltages up to 
35V. 



 
 

Figure 9 

Notice in the schematic that two resistors, rx and ry, do not have an assigned value. This 
is because our motor draws only 100 mA, well under the chip's supported 1,250 mA. 
However, if you were to use a motor that draws the maximum or above, then you would 
need to use rx and ry to get the amperage under 1,250 mA. For example, a 24V motor 
with a phase resistance of 15 ohms would draw 1,600 mA (24/15 = 1.6). In this case, you 
should use _at least_ a 5 ohm resistor for both rx and ry, which would bring the current 
down to 1.2 A. 

Since the input of the UCN 5804 is CMOS and TTL compatable, we can connect the 
outputs from the PIC directly into the UCN 5804. Two outputs are needed; one to control 
the step input (pin 11), and one to control the output enable (pin 15) which enables the 
stepper motor while high and disables the stepper motor while low. 

Pins 9 and 10 control the stepping method (half or full steps). Pin 14 controls the step 
direction. Both of these controls can be manipulated by the PIC, but it is easier to control 
them directly through the use of jumpers acting as switches. 

All the program has to do, is output a pulse and set the output enable low. This can be 
accomplished with a very simple program such as the following:  

Listing 3 



' Stepper motor control with a UCN 5804 

Symbol delay = B0  
low 1  
delay = 10  
delay = delay * 1000  
 
loop: pulsout 0,delay  
goto loop  

' make a delay variable 
' set the output enable low 
' set a pulsewidth of 10 ms 
' turn delay into microseconds 
 
' send pulsewidth of delay to UCN5804 
' repeat forever  

 
 

End Listing 3 

Notice that I added an extra step; taking the defined "delay" value and multiplying it by 
1,000. This is neccisary because the pulsout command requires a pulsewidth in micro-
seconds, not milli-seconds. You can make the code even smaller by removing lines 1, 3, 
and 4 and replacing "delay" in line 5 with a set number in microseconds. However, I 
prefer to the method shown in the listing, because it makes it easier to change the delay 
paramater in the more familiar milliseconds without having to convert it to microseconds. 

 

Speed Control via Potentiometers 
The PIC Basic language has a command that allows you to read the value of 
potentiometers on a given scale. This is the "pot" command, and is used in the 
following manner: 

pot pin,scale,var 

Where pin is the pin the potentiometer is connected to (pins B0-7), scale is the maximum 
value the command will return (in this case 245, being the maximum amount of ms we 
want in between pulses), and var is the variable the value will be placed in. 



Using this command, we can determine the value of a potentiometer (we will be using a 
50K ohm pot) and then use it to control the pulsewidth outputted to the UCN 5804. A 
schematic is shown in Figure 10.  

 
 

Figure 10 

The program is shown in listing 4. First, it reads the value of pin B2 (the potentiometer), 
then places it on a scale of 245. That value is then multiplied by 1,000 (converting it into 
microseconds) and set to the UCN 5804. 

Listing 4 

' Controlling a stepper motor with the UCN 5804 and a potentiometer 

Symbol delay = B0  
low 1  
 
start: 
pot 2,245,delay  
if delay < 25 min  
goto turn  
 



turn:  
delay = delay * 1000  
pulsout 0,delay  
goto start  
 
min:  
delay = 25  
goto turn  

' make a delay variable 
' set the output enable low 
 
 
' read pot at pin B2 
' set min delay to 25 
' if delay is over 25, start moving 
 
 
' turn delay into microseconds 
' send to UCN 5804 
' go back to start 
 
 
' bottom out the delay at 25 
' start the motor  

 
 

End Listing 4 

Not quite as complicated as you may have expected (thanks to the use of the UCN 5804). 
Notice again, the minimum delay set at 25 ms. If you would like to make it a lower 
number (thereby making the motor turn faster), simply change all occurances of "25" to 
the number desired. 

Controlling Stepper Motors with a PIC 
Microcontroller 
If your motor does not move at all when the program is active, then the most likely 
problem is that the diodes are facing the wrong direction. Check the schematic for proper 
wiring.  



If the motor is moving, but does so only sporadicaly or jiggles back and forth, then there 
can be a number of possible causes: 

1. There is not enough power going to the motor. This is often the case when using 
batteries which cannot support the drain of the motor. It is reccomended that you use a 
wall transformer to power the motor in combination with a 7805 voltage regulator to 
power the circuitry. 

2. You are not using TIP 120 transistors, or a variation that is not able to support the load 
of the stepper motor. 

3. The stepper motor is not wired to the correct transistor. Check the coil resistance with 
an ohm meter and rewire properly. For motors purchased from us, the pinouts are 
available here. 

4. The pulse frequency is higher than that which the motor can react to, causing a 
malfunction. The programs in this article use the delay variable to control pulse 
frequency. Try increasing the value to decrease pulse frequency. 

 

Stepper Motors:  
Most of the motors we are familiar with spin when provided with electricity.  The small 
DC motors found in toys have two wires coming out of them-- and batteries have two 
sides (+ and -), so it's pretty easy to figure out how to hook them up.  Connect the battery 
to the motor one way, and it spins clockwise.  Reverse the connection and you get 
counter clockwise.  We can certainly use our parallel port bit wires to control the 
electricity feeding a DC motor, but because the motor spins freely, it is difficult to 
precisely control exactly how far it spins.  If we want the motor to turn exactly a certain 
amount, we either need to measure how far the motor has turned, and feed this 
information back to the computer so it can make corrections in the controlling signal (this 
is how servo motors work), or we need a different kind of motor.  And here is where 
stepper motors come in!  Steppers don't spin, they step-- meaning their shaft rotates a 
certain amount with each command received from the controlling electronics (stepper 
motor driver).  Steppers can do two things-- take a step clockwise, or take a step counter 
clockwise.  Because steppers break rotation into discrete steps, we can think of them as 
digitizing motion, with each step being a motion pixel.  This is ideal for connecting to the 
computer.  



The down-side to steppers is that they are more complicated to hook up than simple DC 
motors.  Steppers have 4,5,6 or 8 wires coming out of them!  Electricity must be fed to 
just the right wires, in just the right amount and at just the right time for the motor to take 
a step.  Fortunately this is a common need, and there are inexpensive electronic devices 
(integrated circuits or IC's) that are made just for this task.  The job of the stepper motor 
driver is to convert two bits of information (we will use two of our bit wires again) into 
the proper pulses of electrical flow that will make the stepper motor work.  

And what do these two bits do?  
The first is DIRECTION-- this bit determines which direction (CW or CCW) steps will 
go.  
The second is STEP-- when the driver receives this bit, the motor takes a step in the 
direction set by the DIRECTION bit.  

Stepper motors are in lots of commonly used computer equipment-- they move the paper 
(up and down) and the print head (across) in your printer.  They move the read/write head 
across the surface of your hard and floppy disk drives.  Because of this, they are 
relatively easy to find as junk!  Which is good, because when they are brand new they 
can be very expensive.  

Steppers come in a wide range of sizes-- generally the bigger they are, the more turning 
force (torque) they have.  The ones we will be experimenting with are pretty small, and 
similar to those you might find if you took apart an old floppy drive.  They are new, but 
were cheap because they were surplus.  Our stepper motors have 200 steps/revolution 
(1.8 degrees per step) which is a very common value-- but other motors may have fewer 
(or sometimes more) steps/rev.  

If you want to know more about steppers and how to run them, there is a wealth of 
information on the Web.  I have listed some of my favorite sites in the reference section.  

 

 
Stepper motor drivers also come in a wide variety of types and sizes.  It is not that hard to 
build your own drive electronics from commonly available parts, but for small motors 
(like ours) it is far easier (and just as cheap) to use a ready-made IC.  We will be using 
the UCN5804 chip.  It combines my favorite two features:  cheap and easy!  



OK, enough talk-- let's do it...  

 

 

Journey of a 1000 miles begins with a 
single step: 
We will start by setting up our breadboard, similar to the way we used it with the Light-
byte.  We will leave the 2+9 pins which mate with our 26-hole connector in exactly the 
same place.  But now we will be adding some new stuff-- in particular, we will be using 
power that does not come from the parallel port itself.  It is important to remember that 
the bit wire electricity is extremely low power-- enough to light an LED, but certainly not 
enough to run a motor!  In order to decrease the likelihood of making a mistake and 
damaging our computers, I have found some surplus power supplies and we will be using 
mating connectors that ensure that power gets hooked up in the right places.  I like Power 
Supplies because I hate changing batteries.  I found the PS we will use as surplus-- it has 
just the voltages (5 and 12) that we need, and can handle the amount of current we will 
use (more about this later).  It is possible to damage the control computer if you are 
not careful with where these voltages are connected!  Fortunately, it is easy with the 
breadboard setup to prevent this.  But, as an extra precaution, we will ALWAYS check 
our circuit BEFORE connection to the computer.  

Here is the breadboard map of our single stepper motor driver circuit:  



And here is a picture of the breadboard up to this point.  

Placement of the PS connector is crucial-- the four pins must go into the first and second 
column of holes (E1,E2,F1,F2).  This will ensure that 5+ is on the A1-D1 column, GND 
is on both the A2-D2 and F2-J2 columns, and 12+ is on the F1-J1 column.  We will put a 
drop of Superglue on the bottom of this connector so that it does not come out every time 
we plug the PS into it.  

After carefully checking to make sure that we have all the parts and jumpers properly in 
place, we will connect our stepper to the 6-prong connector (at J27-J32).  Make sure the 
connection is made so that the motor's white and yellow leads are connected to the right 
side (J31,J32).  Turn the motor shaft-- it should feel no different than before you made 
the connection.  

Plug the PS's AC cord into a wall outlet, and then insert the PS's plug into the PS 
connector that has been glued to the breadboard.  It only goes in one way (the arrow will 
be visible on top).  Now try to turn the motor's shaft again-- it should be stuck tight!  
You may be able to overpower it into turning (this causes no harm), but there is an 
obvious difference.  If the shaft turns easily, then something is wrong.  Don't feel bad-- I 
rarely put together a circuit which works the first time!  Disconnect the PS plug and 
carefully double check every connection.  You will find the error if you are patient.  

You will notice that after a short while your motor will get 
very warm.  This is normal for stepper motors, but may surprise you if you don't know 
this.  

OK-- if everything checks out (the motor shaft is stuck), we are now ready to connect to 
the computer.  But first, it is a good idea to disconnect out PS from the breadboard, in 
case we put the 26-hole connector on wrong.  So, after removing power from the 
breadboard, connect the 26-hole connector to the 2+9 pins (just as with the Light-byte).  
Now reconnect to the PS.  Again the motor will be frozen in place.  
 
Now we need to write a program to send step and direction bits to our motor:  

Start QBASIC, and type (in the program window):  

     OUT 888,2  
     OUT 888,0  



Put your finger on the motor shaft and then push Sh-F5--  you have just taken your first 
step!  
Yes, it is rather small-- do it a couple times to convince yourself that the shaft is really 
moving.  

Now, let's use a loop to make lots of steps (steps1.bas):  

     CLS  
    INPUT "enter count value for speed control: ", speed  
    FOR counter = 1 TO 400  

    OUT 888,2  
    OUT 888,0  
    FOR zz = 1 TO speed: NEXT  
   
    NEXT counter  

Run the program (Sh-F5) and try a count value of 500.  You should see the shaft take 1 
complete rotation.  Try it a few times, and pay careful attention to the starting and final 
position of the flat spot on the shaft (they should be exactly the same).  Try different 
count values-- the lower, the faster it goes (remember, the computer must count up to this 
number in between every step).  You will find a value that is too low-- the motor just 
can't step that fast.  This causes no harm to the motor or the computer, but of course this 
"misstepping" causes position errors and we will want to avoid it in the future when we 
are building robots.  

How can we make it go in the other direction?  Think about that direction bit.  It is 
assigned to bit #0 (STEP is on bit #1).  In our program, we have left it off the whole time-
- OUT 888,2  can be thought of as OUT 888, 0+2 .  But what if we try OUT 888,1+2 -- 
go ahead, modify the program and run it.  The shaft should complete 1 rotation in the 
opposite direction now.  

Finally, let's do both directions, 10 times (steps2.bas):  
   
    CLS  
    INPUT "enter count value for speed control: ", speed  

    FOR repetition = 1 to 10  
   
    FOR counter = 1 TO 400  
    OUT 888,2  
    OUT 888,0  
    FOR zz = 1 TO speed: NEXT  
    NEXT counter  
   
    FOR counter = 1 TO 400  



    OUT 888,3  
    OUT 888,0  
    FOR zz = 1 TO speed: NEXT  
    NEXT counter  

    NEXT repetition  

Notice that (if you haven't chosen a counter value too low) the shaft position at the start 
and end of the run is the same.  This is because we have asked the motor to make full 
rotations only.  But if you look at the program you will notice that our program 
commanded the motor to take 400 steps (not 200).  The reason is that we are running in 
"half-step" mode-- an option of the 5804b chip.  Although our motor is designed to take a 
step of 1.8 degrees (200 steps/rev), this applies only when it is run in "full-step" mode.  
The 5804b chip can run in this mode, but I always choose half-step because it is smoother 
(results in smaller motion pixels).  Even though we will actually be taking half-steps, I 
will refer to these simply as steps.  

 

Dual Stepping: 
From controlling a single stepper (using two of our bit wires), to controlling two steppers 
is as easy as adding another chunk of driver circuitry to our breadboard, and connecting it 
to two more bits-- bits 0 and 1 are taken, so we'll use #2 and #3 to control DIRECTION 
and STEP for our second motor.  Here's the breadboard map:  

Notice that all we've done is to add an identical copy of the UCN5804 chip and its 
jumpers, except for the connection to bits 2 and 3 (wire #4 and #5 of the parallel port 
cable).  



Pic of breadboard up to this point.  (I have added an LED + resistor across +5 and GND 
as a "power on" indicator)  

Just as with the single motor circuit, attach a motor to the new circuitry's 6-prong 
connector and then apply power.  As before, the shaft should be frozen (disconnect power 
and troubleshoot if this is not so).  If the new circuit checks out, attach your other motor 
to the first 6-prong connector.  Shaft frozen?  Good.  

Disconnect power.  Attach to the parallel port via the 26-hole connector (carefully), and 
reapply power.  

 

Now let's modify steps2.bas to move our second motor:  

     CLS  
    INPUT "enter count value for speed control: ", speed  

    FOR repetition = 1 to 10  
   
    FOR counter = 1 TO 400  
    OUT 888,8  
    OUT 888,0  
    FOR zz = 1 TO speed: NEXT  
    NEXT counter  
   
    FOR counter = 1 TO 400  
    OUT 888,12  
    OUT 888,0  
    FOR zz = 1 TO speed: NEXT  
    NEXT counter  

    NEXT repetition  

Run it-- motor #2 should now be swiveling merrily back and forth!  But what about 
motor #1-- can we have them both moving at the same time?  Sure-- it's as simple as 
addition:  change OUT 888, 8  to OUT 888, 2+8, and OUT 888, 12  to OUT 888, 3+12.  
Running this new modification should result in both motors moving identically.  Look at 
what we're doing-- simply controlling DIRECTION and STEP bits, no different than any 
other bit-controlled device.  Just like with the Light-byte, we can have any combination 



of DIR and STP bits we want.  And we have room to add two more stepper drivers and 
motors!  

 

Egg-bot: 
About 10 years ago I was asking myself what I could do with the two stepper motors that 
I had learned to control.  No matter how excited I was over the potential of being able to 
precisely control motion, others remained relatively unimpressed at the sight of two 
motor shafts swiveling back and forth.   Easter was coming, and my kids were talking 
about egg-coloring-- suddenly I had an application!  My first motion-control device was 
built from junk parts and a few stolen pieces from my kids' toy chest.  

We will be building essentially the same device, with a slightly improved design.  
   

 

To begin, lets look at our assortment of parts:  
   



 
In April of 1990 I had just learned how to connect two stepper motors to an old PC and 
was pondering an application. Easter was approaching, and my kids' discussion of egg 
coloring prompted an idea: construction of an "egg-plotter" using the two motors in an X 
and Y configuration-- one to roll the egg along its long axis, the other to move a pen from 
"pole to pole." My construction skills were pretty shabby, but I managed to throw it 
together in an afternoon. After writing a simple BASIC routine, I sat back and observed 
the creation of my first piece of robotic art. 

 

Stepper Motor Experiments 
Stepper motors are most commonly controlled by microprocessors or 
custom controller ICs and the current is often switched by stepper motor 
driver ICs or power transistors. Precise motion is possible but the complexity 
usually lands the hobbyist's stepper motors in the "maybe someday" parts 
bin. But steppers may be used for a variety of applications without 
complex circuitry or programming. At first glance the stepper motor looks 



a bit intimidating since there are at least four wires and often there are six. 
Most steppers have two independent windings and some are center-
tapped, hence the four or six wires. A quick ohmmeter check will 
determine which wires belong together and the center-tap may be 
identified by measuring the resistance between the wires; the center-tap 
will measure 1/2 the total winding resistance to either end of the coil. Tie 
the wires that belong together in a knot and tie another knot in the 
center-tap wire for easy identification later. Stepper motors have become 
quite abundant and are available in all shapes and sizes from many 
surplus dealers. Experimenters can also salvage excellent steppers from 
old office and computer equipment.  

Steppers move in small increments usually indicated on the label in 
degrees. To make a stepper motor spin in one direction current is passed 
through one winding, then the other, then through the first winding with 
the opposite polarity, then the second with flipped polarity, too. This 
sequence is repeated for continuous rotation. The direction of rotation 
depends upon which winding is the "leader" and which is the "follower". 
The rotation will reverse if either winding is reversed. The center-tapped 
versions simplify the reversal of current since the center-tap may be tied to 
Vcc and each end of the coil may be alternately pulled to ground. Non-
tapped motors require a bipolar drive voltage or a bit more switching 
circuitry. If current is applied to both windings, the stepper will settle 
between two steps (this is often called a "half-step"). Taking the half-step 
idea to the extreme, one could apply two quadrature sinewaves to the 
windings and get very smooth rotation. This technique would not be 
particularly efficient since the controller would be dissipating at least as 
much power as the motor but, if smooth motion is required, it might be 
worth a try! Or, for those who don't mind complexity, the sinewaves could 
be efficiently approximated by using variable duty-cycle pulses. But the 
purpose here is to get those motors out of the junk box, not to think of 
more reasons to leave them alone! So here are some simple things to try. 

Steppers make excellent low power generators and surprisingly efficient 
low power motors for low RPM applications. As a starting point, try 
connecting the windings of two steppers together. Pick steppers that turn 
freely so that internal friction doesn't spoil the experiment. When you spin 
one motor shaft, the other will follow. Admittedly, there is little torque. But it 
does illustrate that steppers may be used to generate electricity. Here are 
a couple of sketches showing how to connect stepper motors as 
generators: 



 

The AC windings are not directly connected since the voltages are 90 
degrees out of phase and the resulting voltage would be somewhat 
lower. Dual isolated outputs are possible if the grounds for each winding 
are not connected together. Here are a few application ideas:  

Add a hand crank and bulb for kids' science demonstration. A 24 volt 
stepper will light a 120 volt nightlight or Christmas tree light. 
Make a wind-powered anemometer. 
Generate a higher voltage by turning a high voltage stepper with a low 
voltage motor. 
Run various gadgets including radios, calculators, multimeters, flashers, 
garage door openers, remote controls, LED flashlights, bike flashers. 
Achieve extreme isolation - use a long plastic shaft to turn the generator 
for high voltage isolation or use a line-powered motor to spin a stepper 
for very high line isolation. 

A large capacitor may be charged to run low current devices for some 
time after a few quick spins of the crank. A voltage regulator may be 
required for some devices but use an efficient series regulator to conserve 
power if the affair is hand-powered. 

Many steppers make excellent low power motors despite the markings on 
the label. For example, a stepper rated at 16.8 volts, 280 mA consumed 
only 20 mA when unloaded and driven with bipolar 5 volt squarewaves. 
Such low currents may be directly extracted from many op-amps and 
logic devices without any additional drivers! Obviously the mechanical 
load must be light and the speed will be low or the motor will stall but 
many useful applications exhibit little load. Here are some examples:  

Use vanes to mechanically chop light, electrostatic fields or other 



radiation. 
Spin a sign or attention-getting symbol on an advertising display. 
Spin a toy radar antenna or make a highly efficient electric toy car or 
train. 
Make a spinning Christmas tree ornament. 
Make a laborator stirrer. 

The following circuit is commonly called a quadrature oscillator or a sine - 
cosine oscillator and may be built using almost any op-amp with 
reasonably high output current. An LM358 actually worked in this circuit, 
but only barely! A better choice would be an LM833 or any one of many 
higher current op-amps.  

  

 

  

The two transistors generate Vcc/2 so that the current in the windings will 
reverse when the op-amps go high and low. They are not needed if a 
dual polarity power supply is used. Simply ground the windings that go to 
the emitters. A motor rated at 16.8 volts and 280 mA consumed only 30mA 
in the above circuit when unloaded. Try whatever stepper motor is 
available and adjust the power supply voltage for proper operation. Don't 
expect to get much torque from this circuit! For more drive capability 
connect two transistors to the op-amp outputs in the same manner as the 
Vcc/2 circuit above. Leave out the resistors and simply connect the two 
bases to the op-amp output. The two emitters connect together and to 
the motor winding.  



The above circuit is all that is needed for many applications but the 
following circuit has a bit more flexibility. 

 

In this circuit the 74HC74 directly drives the stepper motor for low power 
applications. The two flip-flops are alternately clocked to give the desired 
"follow-the-leader" pulse train. The 16.8 volt motor (1.8 degree step size) 
described above draws only 20 mA in this circuit and a tiny 15 degree 
step size, 12 volt motor only draws 30 mA. The unused inverters are wired 
to form a slow pulse generator which may be used to randomly change 
the direction of rotation. Actually, the change of direction will often 
synchronize with the spin oscillator giving a back-and-forth action unless 
the oscillator frequency is just right. This change of direction will add 
interest to moving displays. 

The circuit generates four control signals and adding circuitry for high 
power operation is fairly easy. If a center-tapped motor is used then the 
following connection will work: 



 

You will need one of these circuits for each motor winding. If the motor 
doesn't have a center-tap then try the circuit below. The values are only 
representative and may vary depending upon the motor and transistor 
gain. No provisions are shown to protect against inductive kickback but 
small motors don't seem to generate much. However, some care may be 
required if larger motors and higher currents are used. Consider adding 
diodes from each motor winding to Vcc (the cathode goes to Vcc). Also, 
the 2N440Xs are only good for a few hundred milliamps so choose heftier 
transistors and use lower value resistors if higher motor currents are 
expected. 

 

The flip-flop shown is an HC device and its power supply should be limited 
to 5 or 6 volts but the flip-flop could be a 4000 series device if driver 
transistors are added. The 4000 series devices cannot supply much current 
but they will run on +15 volts. Increase the resistors to 10k and use 
darlington transistors (or mosfets such as the VN10KM) in place of the NPNs 
shown.  

Here is a note sent in by Garin : 



I appreciate your experimenters internet home site for new 
electronics nuts.  A good source of a ready made "robot" 
stepper motor system is an old dot matrix computer printer.  
Not only does it contain several motors, but it also has in it the 
electronics to drive them which can be interfaced to your 
control computer via the parallel port. Old manuals list control 
codes which can be translated into your application much 
faster and cheaper than designing your own system. In fact 
with the advent of color inkjet printers, many old dot matrix PC 
computer printer can be had for free. Hopefully this note will 
be of help. 

 

 

 

 

 

 
 
 


