
8.03 Fall 2004
Problem Set 1 Solutions

Solution 1.1: Manipulation of complex vectors
Part (a)

(4 −
√

5j)3 = 43 − 3 · 42 ·
√

5j + 3 · 4 · (
√

5j)2 − (
√

5j)3

= 64 + 5
√

5j − 48
√

5j − 60

= 4 − 43
√

5j

Magnitude

|(4 −
√

5)3| =
√

42 + (43
√

5)2 =
√

16 + 9245 =
√

9261 = 96.23 (1)

Direction

arctan

(
−43

√
5

4

)
= −87.62o

We show below a graphical representation. Raising the complex vector Z to the power 3 means that the new angle
is 3 times larger than that of Z, and the length of the new vector is the length |Z|3. The length of the vector Z3 is
not to scale (|Z|3 ≈ 96).
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FIG. 1: 1.1(a) Vector Rotation

Part (b)
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Aej(ωt+π/2)

4 + 5j
=

A(cos(ωt + π/2) + j sin(ωt + π/2))
4 + 5j

=
A(cos(ωt + π/2) + j sin(ωt + π/2))

4 + 5j
× 4 − 5j

4 − 5j

=
A[4 cos(ωt + π/2) + 5 sin(ωt + π/2) + j[4 sin(ωt + π/2) − 5 cos(ωt + π/2)]]

42 + 52

Real Part

A

41
[4 cos(ωt + π/2) + 5 sin(ωt + π/2)] (2)

Imaginary Part

j
A

41
[(4 sin(ωt + π/2) − 5 cos(ωt + π/2)] (3)

Part (c)
Remember ejθ = cos(θ) + j sin(θ)

Z1 = jj = [ej(π/2±2nπ)]j = ej(π/2±2nπ)×j = ej2(π/2±2nπ)

= e−(π/2±2nπ)

� 0.208 , 3.88 × 10−4 , 1.11 × 102 ... (n = 0, 1...) (4)

Note: All values are real!

Z2 = j8.03 = [ej(π/2±2nπ)]8.03 = ej([8.03×(π/2±2nπ)]

= cos
[
8.03 × (

π

2
± 2nπ)

]
+ j sin

[
8.03 × (

π

2
± 2nπ)

]
= 0.999 + 0.047j , 0.9724 + 0.233j , 0.990 − 0.141j ... (n = 0, 1...)

Solution 1.2: SHM of y as a function of x

y = A cos(kx) + B sin(kx)

⇒ dy

dx
= −Ak sin(kx) + Bk cos(kx)

⇒ d2y

dx2
= −Ak2 cos(kx) − Bk2 sin(kx) = −k2[A cos(kx) + B sin(kx)]

d2y

dx2
= −k2y

Hence the given differential equation has y = A cos(kx) + B sin(kx) as its solution.
Now to express the equation in the desired form, we divide and multiply it by

√
A2 + B2. When we substitute

cos(α) = A/
√

A2 + B2 and sin(α) = −B/
√

A2 + B2, the equation takes the desired form:

y =
A cos(kx) + B sin(kx)√

A2 + B2
×
√

A2 + B2

=
√

A2 + B2[cos(α) cos(kx) − sin(α) sin(kx)]

=
√

A2 + B2 cos(kx + α)

y =
√

A2 + B2 cos(kx + α) =
√

A2 + B2Re[ej(kx+α)] = Re[(
√

A2 + B2ejα)ejkx] (5)

where

C =
√

A2 + B2 α = tan−1 −(
B

A
)
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Solution 1.3: Oscillating springs
Part (a)

The mass at the end of the spring oscillates with an amplitude of 5 cm and at a frequency of 1 Hz, hence the values
of A and ω are:

A = 5 cm

ω = 2πf = 2π × 1 = 2π rad/s

We are given that at time t = 0 the mass is at the position x = 0. Using this and substituting the values from
above in the equation x = A cos(ωt + α) we get

0 = 5 cos(α) ⇒ cos(α) = 0
⇓

α = ±π

2
(6)

Hence the possible equations of motion for the mass as a function of time are

x = 5 cos(2πt +
π

2
) ; 5 cos(2πt − π

2
) cm (7)

where the values of the required constants are A = 5 cm, ω = 2π rad/s, and α = ±π
2 .

Part (b)

x = A cos(ωt + α)
⇒ dx/dt = −Aω sin(ωt + α)
⇒ d2x/dt2 = −Aω2 cos(ωt + α) = −ω2x

Substituting values for A,ω, and α from part (a); and putting t = 8
3 sec, we get

x = 5 cos[(2π × 8
3
) ± π

2
] = 5 cos(

16π

3
± π

2
)

= 5 cos(
35π

6
), 5 cos(

29π

6
) = 5 cos(

11π

6
), 5 cos(

5π

6
)

= ±5
√

3
2

cm = ±4.330 cm (8)

dx

dt
= −5 × 2π sin[(2π × 8

3
) ± π

2
] = −10π sin(

16π

3
± π

2
)

= ±5π cm/s = ±15.708 cm/s (9)

d2x

dt2
= 5 × (2π)2 cos[(2π × 8

3
) ± π

2
] = 20π2 cos(

16π

3
± π

2
)

= ±10
√

3π2 cm/s2 = ±170.95 cm/s2 (10)
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Solution 1.4: Floating Cylinder
Part (a)

The diameter of the floating cylinder is d and it has l of its length submerged in water. The volume of water
displaced by the submerged part of the cylinder in equilibrium condition is πd2l/4. Let the density of water be ρw

and the density of cylinder be ρcyl. Hence the mass of the cylinder is:

Mcyl = ρwVdisplaced = ρwπ
d2l

4
= ρcylπ

d2L

4

When the cylinder is submerged by an additional length x from its equilibrium position, the restoring force acting
on it is as follows

Frestoring = −ρwgπd2

4
x ⇒ Mcylẍ = −ρwgπd2

4
x

0 = ẍ +
ρwgπd2x

4Mcyl
(11)

⇒ ω2 = ρw
gπd2

4Mcyl
=

g

l

x(t) = A cos(ωt + α) = A cos(
√

g

l
t + α) (12)

Hence the angular frequency of the oscillations is ω =
√

g/l rad/s and the frequency in cycles per second is

ν =
1
2π

√
g

l
Hz (13)

Part (b)
The equation of motion is of the form x(t) = B cos(ωt + α). We assume up to be the positive and down to be the

negative direction. At t = 0, x = −B thus

x(0) = −B = B cos(
√

g

l
× 0 + α)

α = cos−1(−1) = π

The velocity of the mass is

ẋ(t) = −B

√
g

l
sin(

√
g

l
t + π) = B

√
g

l
sin(

√
g

l
t) (14)

The plot will look as shown in Fig. 2. Amplitude of velocity is Vmax = B
√

g/l.

Solution 1.5: A damped oscillating spring

Mass of the object is m = 0.2 kg and the spring constant of the suspending spring is k = 80 N/m. The re-
sistive force providing the damping force has the value of −bv, where v is velocity in m/s.

Part (a)
Let the oscillations of the spring be along the x axis. The spring force and damping force acting on the mass are:

Frestoring = −kx

Fdamping = −bv = −bẋ
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FIG. 2: 1.4(b) Graph of velocity versus time

Newton’s 2nd law:

mẍ = Fnet = Frestoring + Fdamping = −kx − bẋ

ẍ = − k

m
x − b

m
ẋ

Hence the differential equation describing the motion of the mass is:

ẍ +
b

m
ẋ +

k

m
x = 0 (15)

or

d2x

dt2
+ γ

dx

dt
+ ω2

ox = 0 (16)

where

γ =
b

m
ω2

0 =
k

m

Part (b)
We are given that the damped frequency is ω = 0.995ω0. Now using the Eq. 3-34 from French, the value of the

damped frequency in terms of the undamped frequency and the damping parameter is:
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ω2 = ω2
0 − γ2

4
⇓

(0.995ω0)2 = 0.99ω0
2 = ω2

0 − γ2

4
⇓

γ2

4
=

b2

4m2
= 0.01ω2

0 = 0.01
k

m

⇓
b =

√
0.04km = 0.2

√
km

substituting the values given in the problem, we find b = 0.8 Ns/m =0.8 kg/s .

Part (c)

ω0 =

√
k

m
= 20 rad/s

γ =
b

m
= 4 rad/s

Q =
ω0

γ
= 5 (17)

Four complete cycles imply that the time t = 8π/ω. Eq. 3-35 (French) gives us the envelope for the damped
oscillatory motion as a function of time

A(t) = A0 exp(−γt

2
) = A0 exp(− 4 · 4π

0.995 · 20
)

= A0 exp(−0.804π)

A(t)
A0

= exp(−0.804π) = 0.08 (18)

The factor by which the amplitude is reduced after four complete cycles is 0.08.

Part (d)
The equation defining the decay of energy of the system is:

E(t) = E0e
−γt

substituting values from above, we get

E(t)
E0

= exp(−γt) = exp(−1.608π) = 0.0064 (19)

The factor by which the energy is reduced after four complete cycles is 6.4 × 10−3; this is the square of the ratio of
the amplitudes.
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FIG. 3: 1.8 Simple Two Mass Pendulum

Solution 1.6: A physical pendulum
Part (a)

To solve this problem, we first consider the simpler case of a two mass rigid pendulum, both of whose masses
are equidistant from the pivot point at P. All three points lie on a circle of diamater D and subtend an angle α at
the pivot, as shown in Fig. 3. In this system let the distance of each mass from the pivot point be l. The moment
of inertia of the two masses together is Ip = Ml2/2 + Ml2/2 = Ml2. At equilibrium the position of each mass is
l cos( 1

2α) = l2/D below P. The gravitational potential energy of the system, after being displaced over a small angle
θ is U ≈ Mg l2

D
θ2

2

E ≈ 1
2
Ml2θ̇2 +

1
2
g
Ml2

D
θ2

dE

dt
= Ml2θ̇θ̈ + Mg

l2

D
θθ̇ = 0

0 = θ̈ +
g

D
θ

⇓

T = 2π

√
D

g

Hence the period is independent of the mass M and angle α. It only depends on the diameter D of the circle.
So now considering the circular arc system whose period we have to calculate, we see that we can see it as a

collection of many such two-mass pendulums. Since the period of all those pendulums is the same T = 2π
√

D
g , the

period of the arc is also

T = 2π

√
D

g
= 2π

√
2R

g
(20)

Part (b)
The period of the oscillations is independent of the length of the arc and the 120o angle. Hence when we complete

the arc to form the hoop, the period of the hoop is same as the period of the small angle oscillations of the arc.
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Solution 1.7: Damped oscillator and initial conditions
Part (a)

The solution for the case of critical damping (γ/2 = ω0) is of the form s = (A + Bt)e−γt/2. We know that
s(t = 0) = 0 and ṡ(t = 0) = v0. So

s(0) = Ae0 = 0
⇒ A = 0

ṡ(0) = Be−γt/2 − γ

2
(A + Bt)e−γt/2 = −γ

2
A + B = v0

⇒ B = v0

Hence the time evolution of the displacement of the pen is

s(t) = v0te
−γt/2 = v0te

−ω0t (21)

s(t) does not change sign before it settles to its equilibrium position as s = 0.

A plot of the evolution of a critically damped system is shown in Fig. 4.
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FIG. 4: 1.9(a) Plot of s(t) in the critically damped system

Part (b)
The solution describing the evolution of an overdamped system is

s = A1e
−(γ/2+β)t + A2e

−(γ/2−β)t
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Now

s(0) = A1 + A2 = s0

ṡ(0) = −A1(
γ

2
+ β)e−(γ/2+β)t − A2(

γ

2
− β)e−(γ/2−β)t

0 = −A1(
γ

2
+ β) − A2(

γ

2
− β)

0 = (A2 − s0)(
γ

2
+ β) − A2(

γ

2
− β)

2A2β = s0(
γ

2
+ β)

⇒ A2 = s0
1
2β

(
γ

2
+ β)

⇒ A1 = s0[1 − 1
2β

(
γ

2
+ β)]

Equation of motion is

s = s0[1 − 1
2β

(
γ

2
+ β)]e−(γ/2+β)t + s0

1
2β

(
γ

2
+ β)e−(γ/2−β)t (22)

where

β =

√
γ2

4
− ω2

0

Part (c)
Plot of s(t) for the given values is shown in Fig. 5

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time t →

s
(t

) 
→

1.9(c) Plot of s(t) for t=0 to t=10

FIG. 5: 1.9(c) Plot of s(t) in the overdamped system


