Massachusetts Institute of Technology - Physics Department

Physics - 8.01

Exam #1

Fall 1999

SOLUTIONS

Problem 1 22 points

6 pts a) Highest point when v = 0 $v = v_0 - gt$ $0 = +20 - 10t \Rightarrow t = 2 \sec$ $y = y_0 + v_0t - \frac{1}{2}gt^2 = 20t - 5t^2 \Rightarrow \text{ at } 2 \sec, y = 20 \text{ m}$ 6 pts b) $t = 2 \sec$: 1st stone is at $y = y_0 + v_0t - \frac{1}{2}gt^2 = -+20 \cdot 2 - 5 \cdot 4 = +20 \text{ m}$

This happens to be the highest point.

10 pts c) Hit should occur when 1^{st} stone is 3 sec on its way. Its height is then

$$y = +20 \cdot 3 - 5 \cdot 3^2 = +15 \text{ m}$$

We want the 2^{nd} stone to also be at +15 m at 1 second in its flight:

$$15 = 0 + v_0 t - 5t^2 \quad t = 1$$

$$15 = v_0 - 5 \Rightarrow v_0 = +20 \text{ m/sec}$$

which is the same speed as the 1st stone when it started.

There is another way of finding the speed without making any calculations. At t = 3, the 1st stone is at the same height as it was at t = 1 sec. Since the stones have to collide at this height exactly 1 sec after the 2nd stone is thrown, the 2nd stone should also begin with a speed of 20 m/sec.

Problem 2 34 points

Problem 3 44 points

- 6 pts a) $x = x_0 + v_0 t = 3t$ and at t = 1, x = +3m
- 6 pts b) $a = \frac{dv}{dt}$ and a is constant between t = 1 and t = 3. The velocity goes down by 6 m/sec in 2 sec. Thus, a = -3 m/sec².
- 6 pts c) At the beginning of the 2nd sec, x = +3 and v = +3. During the next 2 sec (up to t = +3), a = -3. Thus x at t = 3 becomes $x = +3 + 3t \frac{3}{2}t^2$. But t is now 2 sec so x = +3 m.
- 6 pts d) $\bar{v}_{t=0,t=3} = \frac{x_3 x_0}{3} = \frac{+3 0}{3} = +1 \text{ m/sec}$
- 10 pts e) Between t = 1 sec and t = 2 sec, the position of x keeps increasing as the velocity is positive. x reaches a maximum at t = 2 sec, at which time its position is x = +4.5 m. During the third second (between t = 2 sec and t = 3 sec), the velocity becomes negative and at t = 3 sec the object is back at x = +3. Thus, it has traveled 4.5 + 1.5 = 6 m during the first 3 sec. Thus its average speed is 2 m/sec.
- $10 \ pts$ f) The plot:

