Massachusetts Institute of Technology - Physics Department

SOLUTIONS

Problem 122 points
6 pts a) Highest point when $v=0$
$v=v_{0}-g t$
$0=+20-10 t \Rightarrow \boldsymbol{t}=\mathbf{2} \mathbf{~ s e c}$
$y=y_{0}+v_{0} t-\frac{1}{2} g t^{2}=20 t-5 t^{2} \Rightarrow$ at $2 \mathrm{sec}, \boldsymbol{y}=\mathbf{2 0} \mathbf{m}$
$6 \mathrm{pts} \quad$ b) $t=2 \mathrm{sec}: \quad 1^{\text {st }}$ stone is at $y=y_{0}+v_{0} t-\frac{1}{2} g t^{2}=-+20 \cdot 2-5 \cdot 4=+\mathbf{2 0} \mathbf{~ m}$ This happens to be the highest point.
$10 \mathrm{pts} \mathbf{c})$ Hit should occur when $1^{\text {st }}$ stone is 3 sec on its way. Its height is then

$$
y=+20 \cdot 3-5 \cdot 3^{2}=+15 \mathrm{~m}
$$

We want the $2^{\text {nd }}$ stone to also be at +15 m at 1 second in its flight:

$$
\begin{aligned}
15 & =0+v_{0} t-5 t^{2} \quad t=1 \\
15 & =v_{0}-5 \Rightarrow v_{0}=+\mathbf{2 0} \mathbf{m} / \mathbf{s e c}
\end{aligned}
$$

which is the same speed as the $1^{\text {st }}$ stone when it started.
There is another way of finding the speed without making any calculations. At $t=3$, the $1^{\text {st }}$ stone is at the same height as it was at $t=1 \mathrm{sec}$. Since the stones have to collide at this height exactly 1 sec after the $2^{\text {nd }}$ stone is thrown, the $2^{\text {nd }}$ stone should also begin with a speed of $20 \mathrm{~m} / \mathrm{sec}$.

Problem 234 points

$$
\begin{array}{ll}
6 \text { pts } & \text { a) } \vec{v}=\frac{d \vec{r}}{d t}=4 \hat{\mathrm{y}}-(2-2 t) \hat{\mathrm{z}} \\
& \text { at } t=3, \vec{v}=\mathbf{4} \hat{\mathbf{y}}+\mathbf{4 \hat { \mathbf { z } }} \\
6 \text { pts } & \text { b) }|\vec{v}|=\sqrt{16+16}=\mathbf{4} \sqrt{\mathbf{2}} \mathbf{~ m} / \mathbf{s e c} \\
6 \text { pts } & \text { c) } \vec{a}=2 \hat{\mathrm{z}},|\vec{a}|=\mathbf{2} \mathbf{~ m} / \mathbf{s e c} \\
6 \text { pts } & \text { d) } v=(2 t-2) \hat{\mathrm{z}} \Rightarrow v=0 \text { when } t=\mathbf{1} \mathbf{~ s e c} \\
10 \text { pts e) } z=t^{2}-2 t-3, \text { at } t=0, z=-3 \\
z=0 \rightarrow t=\frac{+2 \pm \sqrt{4+12}}{}=1 \pm 2 \Rightarrow t=-1 \text { and } t=+3 \\
v=0 \text { at } t=1 \Rightarrow z=1-2-3=-4 \\
& \text { at } t=-2, z=4+4-3=+5
\end{array}
$$

Problem 344 points
6 pts a) $x=x_{0}+v_{0} t=3 t$ and at $t=1, \boldsymbol{x}=+\mathbf{3} \boldsymbol{m}$
6 pts b) $a=\frac{d v}{d t}$ and a is constant between $t=1$ and $t=3$. The velocity goes down by $6 \mathrm{~m} / \mathrm{sec}$ in 2 sec . Thus, $\boldsymbol{a}=\mathbf{- 3} \mathbf{~ m} / \mathbf{s e c}^{\mathbf{2}}$.
6 pts $\quad \mathbf{c}$) At the beginning of the $2^{\text {nd }}$ sec, $x=+3$ and $v=+3$. During the next 2 sec (up to $t=+3), a=-3$. Thus x at $t=3$ becomes $x=+3+3 t-\frac{3}{2} t^{2}$. But t is now 2 sec so $x=+3 \mathrm{~m}$.
6 pts \quad d) $\bar{v}_{t=0, t=3}=\frac{x_{3}-x_{0}}{3}=\frac{+3-0}{3}=+\mathbf{1} \mathbf{~ m} / \mathbf{s e c}$
$10 \mathrm{pts} \mathbf{e})$ Between $t=1 \mathrm{sec}$ and $t=2 \mathrm{sec}$, the position of x keeps increasing as the velocity is positive. x reaches a maximum at $t=2 \mathrm{sec}$, at which time its position is $x=+4.5 \mathrm{~m}$. During the third second (between $t=2 \mathrm{sec}$ and $t=3 \mathrm{sec}$), the velocity becomes negative and at $t=3 \mathrm{sec}$ the object is back at $x=+3$. Thus, it has traveled $4.5+1.5=6 \mathrm{~m}$ during the first 3 sec . Thus its average speed is $2 \mathrm{~m} / \mathrm{sec}$.
10 pts f) The plot:

