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Abstract:

The general focus of this honors thesis is to further understand the properties of 

solid angles of convex polytopes as recorded in the γ-vector.  It is conjectured that 

all the entries of the γ-vector are non-negative for polytopes in any dimension.  

Since entries of the γ-vector are found by adding and subtracting the measures of 

angles in different dimensions, this is non-trivial.  This project will make progress 

towards proving the conjecture for 3-dimensional polytopes.

This project was approached through the concepts and methods of geometric 

combinatorics. Dr. Kristin Camenga has proved that the γ-vector is non-negative 

for all 3-simplices and 4-simplices, where a simplex is defined as a d-dimensional 

object with (d + 1) vertices.  It is also known that the γ-vector is non-negative for 

all 2-dimensional polytopes.  Since we already know this to be true, we will look 

at connections between γ-vectors of prisms and pyramids and to the γ-vectors of 

their 2-dimensional bases. By subdividing pyramids and prisms into simplices, 

known results were applied to make deductions for pyramids and prisms.

Through this honors project, we proved that all 3-dimensional pyramids have 

non-negative γ-vectors.  We also showed γ1(P) + γ2(P) =     

€ 

n−1
2  for a pyramid over an 

n-gon.  For prisms, we were able to demonstrate the relationship between the 

angle sums of a prism and the angle sums of the simplices in a subdivision of the 

prism.  Furthermore, γ1(P) + γ2(P) =     

€ 

n
2  for a prism over an n-gon.
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Chapter 1
Polytopes

Convex polytopes are geometric objects, which we are familiar with in 3-

dimensions.  While 3-dimensional models are exceptionally helpful for 

understanding the general makeup and properties of convex polytopes, the 

concepts are generalized to higher dimensions.  Many of the theorems regarding 

3-dimensional convex polytopes do not apply to polytopes in higher dimensions.  

Constructing Polytopes

Polytopes of all dimensions are constructed in two ways.  The first construction 

finds the convex hull for a finite set of points in any dimension.  The second is 

constructed by the intersection of half-spaces.  While each is different in its 

constructive approach, the same set of objects can be constructed.

Objects are considered convex if for any two points x, y ∈ C, the line segment 

between x and y is also contained in C.  Symbolically, a point set K ⊆ Rd is convex 

if with any two points x, y ∈ K it also contains the straight line segment 

    

€ 

[x, y] = λx + (1− λ) y : 0 ≤ λ ≤1{ } between them. For a set of points, the convex hull 

is defined as the smallest convex set containing K that can be constructed as the 

intersection of all convex sets that contain K. 
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Figure 1.1: To the left, a non-convex polygon & to the right, a convex polygon

Half-spaces in Rd are defined as the set of all points in and on one side of a d – 1 

space, which occupies half of Rd.  In a 2-dimensional context, the intersection of 

half-spaces defined by 1-dimensional lines forms a polygon.  The set of all points 

on one side of plane in 3-space is also a half-space.  By intersecting these 3-

dimensional spaces, a 3-dimensional polytope is formed.

Figure 1.2: The convex hull and intersection of halfspaces forms a convex polytope

A d-simplex is a special polytope defined as the convex hull of any d + 1 affinely 

independent points in some Rn (n ≥ d).  Affine independence implies that a d-

simplex is a polytope of full dimension d.  A 2-dimensional simplex is a triangle.  

A 3-dimensional simplex is called a tetrahedron.  Simplices can be used as 

building blocks for more complex polytopes.
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Figure 1.3: Connecting all vertices in a 2-simplex to an apex forms a 3-simplex

Faces

Each polytope P consists of lower dimensional faces.  In 3-dimensional 

polyhedra, we commonly use such terms as vertices, edges, and faces and 

consider all of them as faces of the polytope.  In the context of general polytopes, 

vertices are referred to as 0-faces; edges are referred to 1-faces; faces are called 2-

faces; the whole polytope, or the cell, will be called 3-faces; and i-dimensional 

faces will be called i-faces.  Faces, not only 2-faces, generally define the boundary 

and structure of any d-dimensional polytope.

Figure 1.4: Vertex, edge, face
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We will denote the number of i-faces of P as fi(P).  Therefore, in a 3-dimensional 

context, f0(P) counts the number of vertices, f1(P) counts the number of edges, 

f2(P) counts the number of faces, and f3(P) counts the number of cells.  When we 

consider the standard cube, it can be seen that f0(P) = 8, f1(P)  = 12, f2(P) = 6, and 

f3(P) = 1 .  

Figure 1.5: Square prism with fi(P) denoted

The f-vector is defined as f(P) = (f0(P), f1(P),…, fd(P)).  Notice that when we 

alternately add and subtract the terms in the f-vector for a 3-dimensional cube, 

we get 1, i.e. 8 – 12 + 6 – 1 = 1.  This generalizes to all polytopes at d-dimensions 

and is known as the Euler relation. That is:
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€ 

(−1)i f i(P) =1
i=0

d

∑  for any d-polytope P.

The h-vector, which is defined as h(P) = (h0(P), h1(P), …, hd(P)), where

    

€ 

hi(P) = (−1)i− j d − j
d − i

 

 
 

 

 
 f j−1(P)

j=0

i

∑

is a linear transformation of the f-vector.  Within this formula, f-1(P) = 1 by 

convention.  Work with polytopes has led to understanding of the h-vector and 

its physical meaning.  

Any d-polytope can be subdivided into simplices.  Consider a 2-dimensional n-

gon, a polygon with n sides.  Any n-gon can be subdivided into triangles, or 2-

dimensional simplices.  This is analogous to subdividing polytopes in 3-

dimensions, which will be discussed in more detail later.

Figure 1.6: Pentagon subdivided into 3 triangles
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There exist a variety of polytopes, yet this honors project deals primarily with 

two specific types: pyramids and prisms, which are defined in Chapter 3.  The 

f-vectors of all pyramids and prisms will span all the possible f-vectors of 

polytopes.  Therefore, these polytopes can be thought of as building blocks for all 

polytopes, so results for these classes of polytopes may lead to results for general 

polytopes.
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Chapter 2
Angle Sums of Polytopes

Last chapter primarily dealt with understanding the basic construction of 3-

dimensional polytopes and the faces that comprise the polytope.  In this chapter, 

we will define the α-vector and γ-vector for a polytope, which are the main focus 

of this study.

The α-vector

The angle sums of any d-polytope P are analogous to entries of the f-vectors.  We 

denote the ith angle sum as αi(P), which is the sum of the interior angles at every 

i-face of P.  The interior angle at an i-face F is the fraction of a d-dimensional ball 

centered at an interior point of F.  These d-dimensional balls are small enough so 

that they do not intersect faces of lower dimension.  

Then we define the α-vector as α(P) = (α0(P), α1(P),…, αd(P)).

Recall our example of the cube.  Consider a vertex.  When we center a small 3-

dimensional ball at the vertex, there is precisely   

€ 

1
8  of the ball contained within the 

cube, so the interior angle is   

€ 

1
8 .  When we consider an edge,   

€ 

1
4  of the ball is 

contained within the cube, so the interior angle is   

€ 

1
4 .  When placing a ball on a 

face,   

€ 

1
2  of the ball is contained within the cube, so the interior angle is   

€ 

1
2 .  Finally, 

the cell will contain the entire ball for an interior angle of 1.
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Figure 2.1: 3-dimensional ball measuring interior angle at a vertex

When dealing with angle sums we need to add the interior angles of every face 

in a given dimension.  When the angles of a polytope are equivalent at every i-

face, we only need to multiply the interior angles at an i-face by the number of i-

faces or fi(P).  In this example, the angles at different faces of a given dimension 

are the same because the cube is symmetrical, which is why we are multiplying 

the interior angle at every face by its corresponding fi(P).  Therefore in the cube,

(8)⋅  

€ 

1
8  = 1 = α0(P),

(12)⋅  

€ 

1
4  = 3 = α1(P),
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(6)⋅  

€ 

1
2  = 3 = α2(P),

(1)⋅1 = 1 = α3(P).

So the α-vector for the cube is (1, 3, 3, 1).

Much like the Euler relation, 
    

€ 

(−1)i f i(P) =1
i=0

d

∑ , the Gram relation states that

    

€ 

(−1)iα i(P) = 0
i=0

d

∑  for any d-polytope P.

We can make a number of general observations about angle sums.  For d-

polytopes, αd(P) = 1.  When we consider higher dimensional polytopes, αd(P) is 

found by placing a d-dimensional ball within the polytope, which will always 

yield a result of 1.  In 3-dimensions, α3(T) = 1.  Furthermore,     

€ 

αd−1(P) = f d −1 (P )
2 .  The 

same sort of argument as above applies in this instance, where fd-1(P) counts the 

number of d – 1 faces, and the interior angle at each d – 1 face contains exactly 

half of the d-dimensional ball.

Consider a 3-simplex, call it T. Using the above results, α2(T) =     

€ 

f 2 (P)
2  = 2 and 

because α3(T) = 1, we can substitute these values in the Gram relation.  Thus, 

α0(T) - α1(T) + 2 – 1 = 0, which implies that α0(T) + 1 = α1(T).  It is also known that 

α0(T) > ½  (Dr. Camenga, unpublished).
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The γ-vector

Let us then define the γ-vector as

€ 

γ(P) = (γ 0(P),γ1(P),...,γ d (P)) ,

where

    

€ 

γ i(P) = (−1)i− j d − j
d − i

 

 
 

 

 
 α j−1(P)

j=0

i

∑ . 

This is analogous to the h-vector in that we are taking a linear transformation of 

the α-vector to find each γi(P).  Unlike the h-vector, there is no known physical 

interpretation.  Within this formula, we will use α-1(P) = 0 by convention.

The γ-vector entries for 3-dimensional polytopes are:

    

€ 

γ0(P) = (−1)0− j 3− j
3

 

 
 

 

 
 α j−1(P)

j=0

0

∑ =
3
3

 

 
 
 

 
 α−1 = 0 .

    

€ 

γ1(P) = (−1)1− j 3− j
2

 

 
 

 

 
 α j−1(P)

j=0

1

∑ = −
3
2

 

 
 
 

 
 α−1(P) +

2
2

 

 
 
 

 
 α0(P) =α0(P) .

    

€ 

γ2(P) = (−1)2− j 3− j
1

 

 
 

 

 
 α j−1(P)

j=0

2

∑ =
3
1

 

 
 
 

 
 α−1(P) −

2
1

 

 
 
 

 
 α0(P) +

1
1

 

 
 
 

 
 α1(P) =α1(P) − 2α0(P) .

    

€ 

γ3(P) = (−1)3− j 3− j
0

 

 
 

 

 
 α j−1(P)

j=0

3

∑ = −
3
0

 

 
 
 

 
 α−1(P) +

2
0

 

 
 
 

 
 α0(P) −

1
0

 

 
 
 

 
 α1(P) +

0
0

 

 
 
 

 
 α2(P)

           

€ 

=α0 (P) −α1 (P) +α2 (P) = 1.
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It follows from the Gram relation in 3-dimensions that γ3(P) = 1.  The sum 

α0(P) – α1(P) + α2(P) – α3(P) = 0 can be rewritten in the form 

α0(P) – α1(P) + α2(P) =  α3(P) = 1.

Currently, we know that for the 3-simplex and 4-simplex, the γ-vector is non-

negative (Dr. Camenga, unpublished).   We will show the γ-vector is non-

negative for any 3-dimensional pyramid.
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Chapter 3
Computer Software

This particular study incorporated the uses of two main pieces of technology to 

formulate and investigate conjectures about the γ-vector.  Cabri 3D is a computer 

software program designed to aid in visualization of polytopes and provide 

coordinates of the vertices.  A new program, specifically designed for this honors 

project, is able to compute the α-vector and γ-vector for 3-dimensional polytopes

Visualizations

Cabri 3D is a software program that allows us to visually represent 3-

dimensional polytopes.  Visualization of 3-dimensional polytopes can become 

exceptionally difficult.  By using this software, we are able to easily visualize the 

object with which we are working from multiple perspectives.  By using this 

program, we can also subdivide polytopes into a set of connected 3-simplices.  In 

doing this, we hope to apply our knowledge of γ-vectors for 3-simplices to more 

generalized polytopes of prisms and pyramids.

Pyramids

The process of forming a pyramid is fairly straightforward. We first construct an 

n-gon.  A pyramid is constructed by adding a vertex, also called an apex, off the 

plane of the polygonal base.
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Figure 3.1: Formation of a pentagonal pyramid from a pentagon

Since we presently know that the γ-vector is non-negative for all 3-simplices, we 

proceed by subdividing pyramids and prisms into multiple simplices with 

connected vertices, edges, and faces.  One way to subdivide pyramids into 

simplices is to form triangles from a vertex in the base.  Then, when the apex is 

added, each triangle forms a simplex with shared vertices, edges, and faces.  

Precise details will be discussed in Chapter 4.
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Figure 3.2: Subdivided pentagonal pyramid into 3 simplices

Prisms

Prisms are constructed in a similar manner.  First, we form a polygonal base of n 

sides.  If we then duplicate the polygon and place it parallel to the plane on 

which the polygon rests and connect corresponding vertices, a prism is created.
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Figure 3.3: Formation of a pentagonal prism from a pentagon

We will consider two ways in which to subdivide prisms into simplices.  Place a 

vertex inside the prism at the centroid.  Connect the exterior vertices to the 

interior vertex, which will form n square pyramids with two n-sided pyramids, 

each of which have the centroid vertex as the apex.  Square pyramids can be 

subdivided into two simplices.  The two n-sided pyramids will then have 

multiple simplices within them as well.  Another method by which prisms can be 

split into simplices is to subdivide both polygonal bases into triangles.  The result 

is multiple triangular prisms. Then each triangular prism can be subdivided into 

three simplices.  The precise details of these subdivisions will be discussed later.
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Figure 3.4: Method of subdividing prisms into simplices

Figure 3.5: Method of subdividing prisms into simplices
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Computational Software

Willard Frutiger and Jeremy Collins designed another piece of computer 

software, specifically for the purpose of calculating α and γ vectors.  First, using 

Cabri 3D as the constructive agent, we will form a prism or pyramid and find 

specific coordinates for each vertex.  Cabri 3D has the ability to provide x, y, and 

z coordinates for any vertex of a polytope.  We then take these x, y, and z values 

and insert them into a previously designed template. From the given vertices, the 

program determines possible edges, faces, and cells as 1-dimensional, 2-

dimensional, and 3-dimensional subspaces.

Figure 3.6: Program input for a 3-simplex

In order to calculate the α-vector, the program uses multiple methods involving 

linear algebra. Normal vectors are computed for each plane of the polytope.  A 

normal vector is perpendicular to a given plane.  Using the Gram–Schmidt 

process, all normal vectors are turned inward.  When normal vectors are then 

scaled to unit vectors, namely n1 and n2, we can find the dihedral angles, or 

interior angles at an edge formed by two planes, by using dot-products.  The dot-

product is an operation which takes two vectors and returns a scalar quantity. 

For example,
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€ 

1
2
3

 

 

 
 
 

 

 

 
 
 
•

4
5
6

 

 

 
 
 

 

 

 
 
 

= (1)(4) + (2)(5) + (3)(6) = 32 .

It is well known that the dot-product of two unit vectors is the same as the cosine 

of the angle between the vectors:

  

€ 

cosθ =n1 • n2

or arccos(n1 • n2) = θ.

Since this method gives us an angle out of a full circle of 360o, we must divide the 

angle θ = arccos(n1 •  n2) by 360o to have our angle in terms of a ratio, which 

defines the interior angle at the edge.  Then,     

€ 

α1(P)  is the sum of these interior 

angles,     

€ 

α2(P) = f 2 (P )
2 , and 

€ 

α3(P) =1.  We find α0(P) = α1(P) – α2(P) + α3(P) using the 

Gram relation.

This process can be repeated multiple times within the program by performing 

transformations to the vertices.  For example, if we have a symmetric square 

pyramid, we can move the apex in multiple directions and calculate the angles of 

the resulting polytopes.  As seen in Chapter 2, we can then compute each γi(P) .  

The results of these trials may lead to a variety of conjectures. 
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Figure 3.7: Transformation of a square pyramid by moving the apex

The computer program is currently able to calculate α-vectors of 3-dimensional 

polytopes; however work is progressing on the program to compute angle sums 

for higher dimensional polytopes.  Using the software program, we were able to 

make a variety of conjectures based on data returned. 
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Chapter 4
Pyramid

Last chapter included visual representations of polytopes using Cabri 3D and the 

process through which we subdivide pyramids into simplices.  In this chapter, 

we will use the subdivision process to prove that the γ-vector of pyramids is non-

negative.  

Subdivision of polytopes into simplices requires that interior faces are added to 

the polytope.  This means that when summing angles over the faces in the 

subdivision, the angles at these added faces will be in addition to the angle sums 

of the original polytope.  Since the γ-vector is computed from the α-vector, we 

will show that the γ-vector is non-negative by computing αi(P) based on the 

angle sums of the simplices in the subdivision.

Note: The arguments will be illustrated using pentagonal pyramids, although the 

arguments apply to all pyramids over a polygon.

Pyramid Subdivision

Consider a pyramid PQ.  Let n be the number of vertices of the base polygon.  

When we select a vertex at which all polytopes in the subdivision will meet, we 

see that there are n – 3 interior edges in the base, forming n – 2 triangles.  Thus, 

connecting each of these newly created triangles to the apex forms n – 2 

simplices, which we will name T1, T2, …, Tn-2.
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Figure 4.1: Three simplices formed when a pentagonal prism is subdivided

Each of these simplices, Ti, contributes 1 to 
    

€ 

α3(Ti )
i=1

n−2

∑  = n – 2 while the original 

simplex only had α3(PQ) = 1 for a difference of n – 3.    Thus, we subtract n – 3 

from 
    

€ 

α3
i=1

n−2

∑ (Ti )  when subdividing into simplices, since the original pyramid has 

the property α3 = 1. Thus

    

€ 

α3(PQ) = α3(Ti ) − (n − 3)
i=1

n−2

∑ .

Recall that α2 will always be the number of faces of a particular polytope 

multiplied by ½.  When there are n vertices, there will always be n faces adjacent 

to the apex and one base, each with an angle of ½, so α2(PQ) =     

€ 

n+1
2  for any 
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pyramid.  The subdivision of the base into n – 2 triangles results in an additional 

n – 3 faces in the base, which contribute an extra 

€ 

n−3
2  to 

    

€ 

α2(Ti )
i=1

n−2

∑ .  There are also 

n – 3 faces formed inside the polytope when subdivision occurs.  Since the 

interior triangles are the boundary between two simplices in the subdivision, the 

angle will count ½ for both simplices, for a total of     

€ 

2(n−3)
2  at the interior faces of the 

subdivision.  The outer faces between the base and the apex will continue to 

contribute     

€ 

n
2  to 

    

€ 

α2(Ti )
i=1

n−2

∑ .  Thus, the only subtractions necessary are the angles of 

the newly formed triangles in the base and the interior triangles that extend to 

the apex. 

Figure 4.2: Two interior faces formed
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So, 
    

€ 

2(n − 3)
2

+
n − 3

2
=

3(n − 3)
2

 is subtracted from 
    

€ 

α2(Ti )
i=1

n−2

∑
 
to get     

€ 

α2(Ti ) , where 

    

€ 

2(n − 3)
2  

measures the angles at the additional interior faces and 
    

€ 

n − 3
2

 measures 

the  angles at the additional exterior faces .  Thus

    

€ 

α2(PQ) = α2(Ti ) −
3(n − 3)

2i=1

n−2

∑ .

The interior angle at an edge varies for different edges.  When we considered α2, 

we knew that the angles at each face would always be ½; however the angle at 

one edge may be entirely different from that of another edge.  Yet when we 

subdivide a pyramid with n – 3 subdivisions, the only edges created are those in 

the base.  Each new interior edge will have a total angle of ½. The angle of an 

interior edge will be split by an interior triangle, and the sum of the two angles 

will remain ½.  The same argument applies for exterior edges in the original 

pyramid.  The interior angles in the two simplices that meet at an edge will sum 

to the original interior angle of a particular exterior edge.  Thus, we do not need 

to be concerned with how they are divided, but only note that the sum is 

constant, so the sum of the interior angles at an edge does not vary. 
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Figure 4.3: Two edges formed

Thus, 
    

€ 

n − 3
2

, which is the measure of angles at the new edges, is subtracted from 

    

€ 

α1(Ti )
i=1

n−2

∑  to get αi(PQ).  So 

    

€ 

α1(PQ) = α1
i=1

n−2

∑ (Ti ) −
n − 3

2
.

The angle sum at each vertex does not change. When polytopes of the 

subdivision meet at a vertex, they also subdivide the angle.  Thus, the angles in 

the Ti that meet at a vertex will sum multiple angles to original angle of the 

vertex. Thus,
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€ 

α0(PQ) = α0(Ti )
i=1

n−2

∑ .

Recall

    

€ 

γ0(P) = 0,     

€ 

γ1(P) =α0(P) ,     

€ 

γ2(P) =α1(P) − 2α0(P),     

€ 

γ3(P) =1.

We can see that γ0(PQ), γ1(PQ), and γ3(PQ) are always non-negative immediately.  

The angle sum at α0(P) will always be a positive number, thus γ1(PQ) is positive.  

Now, we must show that γ2(PQ) is non-negative.

Since we subdivided the pyramid into multiple simplices, it is necessary to sum 

each angle sum from every simplex in the subdivided polytope.  We will use the 

fact that α1(T) = α0(T) + 1 to express α1(PQ) in terms of α0(Ti) for i = 1, 2, …, n – 2. 

Observe:

    

€ 

α1(PQ) = α1
i=1

n−2

∑ (Ti ) −
n − 3

2

    

€ 

= (α0(Ti ) +1) − n − 3
2i=1

n−2

∑

= 
    

€ 

α0(Ti ) + (n − 2) − n − 3
2i=1

n−2

∑

= 
    

€ 

α0(Ti ) +
n −1

2i=1

n−2

∑ .
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To show γ2(PQ) 

€ 

≥  0, we will substitute the above into the equation for γ2(PQ) 

along with 
    

€ 

α0(PQ) = α0(Ti )
i=1

n−2

∑ .

    

€ 

γ2(PQ) =α1(PQ) − 2α0(PQ).

    

€ 

= α0(Ti ) +
n −1

2i=1

n−2

∑ − 2 α0(Ti )
i=1

n−2

∑

 = 
    

€ 

n −1
2

− α0(Ti )
i=1

n−2

∑

  

Recall that α0(Ti) < ½ from Chapter 2. This implies that 
    

€ 

α0(Ti ) <
n − 2

2i=1

n−2

∑ .  We add 

every α0(Ti) for each simplex on the left, whereas on the right we have precisely 

n – 2 simplices times ½. 

    

€ 

γ2(PQ) =
n −1

2
− α0(Ti )

i=1

n−2

∑ >
n −1

2
−

n − 2
2

=
1
2

.

Therefore, 
    

€ 

γ2(PQ) >
1
2

.

By the work above, we have proved the following:
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Theorem 1:

Since γ0(PQ), γ1(PQ), γ2(PQ), and γ3(PQ) are all positive values in 3-dimensions, 

the γ-vector is non-negative for all 3-dimensional pyramids.
 
 


                                                                                                                                            

Using the relationships between αj(PQ) and 
    

€ 

α j
i=1

n−2

∑ (Ti )  we can also prove the 

following proposition.

Proposition 1:

For all 3-dimensional pyramids PQ,     

€ 

γ1(PQ) + γ2(PQ) = n−1
2 , where n represents the 

number of sides in the base pyramid.

Proof:

Consider each respective γi(PQ) in terms of αi(PQ).  We have 

γ1(PQ) + γ2(PQ)  = (α1(PQ) - 2α0(PQ)) + α0(PQ) = α1(PQ) - α0(PQ).

We then have 

    

€ 

γ1(PQ) + γ2(PQ) =α1(PQ) −α0(PQ)

              
    

€ 

= α0(Ti ) +
n −1

2
−

i=1

n−2

∑ α0(Ti )
i=1

n−2

∑

              
    

€ 

=
n −1

2
.
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Thus, for all 3-dimensional pyramids, 

    

€ 

γ1(PQ) + γ2(PQ) =
n −1

2
.
 
 
         


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Chapter 5
Prism

Prism Subdivision

Again, we will consider the relationships between angles sums of a prism and 

those of the simplices in the subdivision.  Consider a prism, denoted BQ. Let n be 

the number of vertices of the base polygon.  Recall from Chapter 3 the process of 

subdividing prisms.  As with pyramids, we will subdivide each of our two base 

polygons from corresponding vertices.  Notice that subdivision of the upper base 

polygon will mirror that of the lower base polygon.  Then we look at the prisms 

made by corresponding triangles.  There will always be n – 2 triangular prisms 

formed, each of which can be subdivided into three simplices.  Thus, the total 

number of simplices formed when we subdivide is 3(n – 2).

Figure 5.1: Three simplices formed within each triangular prism
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Since the original prism has α3(BQ) = 1 and each Ti has 

€ 

α3(Ti) =1, 

    

€ 

α3(BQ) = α3(Ti ) − (3(n − 2)
i=1

3(n−2)

∑ −1) .

When we consider α2(BQ), the computational subtractions necessary are far more 

complicated after subdivision than any other case.  Here, α2(BQ) =     

€ 

n+2
2  for any 

prism that has not been subdivided, since there are n + 2 faces.  When we 

subdivide the prism into 3(n – 2) simplices, we are adding faces between 

simplices within each triangular prism, between triangular prisms, and on outer 

faces.

Any interior face contributes ½ to α2(Ti) of two different simplices for a total of 1. 

First, we will consider the interior faces between simplices in each triangular 

prism formed from subdivision.  Since there are three simplices, there will be two 

interior faces formed within each triangular prism.  Thus, we have 2(n – 2) 

interior faces within triangular prisms, since there are n – 2 triangular prisms 

formed from subdivision.
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Figure 5.3: Two faces formed within each triangular prism between simplices

Next, we consider faces between triangular prisms.  There are two triangular 

faces on each interior vertical face, for a total of 2(n – 3) interior triangles between 

triangular prisms.  Therefore, there are 2(n – 2) + 2(n – 3) = 4n – 10 interior 

triangles which contribute 4n – 10 to 
    

€ 

α2(Ti )
i=1

3(n−2)

∑  but not to α2(BQ).

Figure 5.4: 4 faces formed between triangular prisms
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Lastly, we must consider the formations of additional exterior faces.  When we 

consider the base triangles formed from subdivision, there are two bases, 

contributing ½ towards the angle sum at the faces, and n – 3 additional triangles 

in each base.  Furthermore, when we formed the interior simplices from each 

triangular prism, every exterior face aside from the two bases was split into two 

faces each, thus there are n additional faces formed around the exterior. 

Therefore, there are 2(n – 3) + n new exterior faces which equals 3n – 6, which 

contribute 
    

€ 

3n − 6
2

 to 
    

€ 

α2(Ti )
i=1

3(n−2)

∑ .

Figure 5.5: Additional exterior faces
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So, 
    

€ 

4n −10 +
3n − 6

2
, or 

    

€ 

11n − 26
2

 is subtracted from
    

€ 

α2(Ti )
i=1

3(n−2)

∑ , where 4n – 10 

represents the interior faces and 
    

€ 

3n − 6
2

 represents additional exterior faces.  

Thus, we have

    

€ 

α2(BQ) = α2(Ti ) −
11n − 26

2i=1

3(n−2)

∑ .

Now, we will consider α1(BQ).  When the polytope is subdivided into n – 2 

triangular prisms, there are n – 3 additional edges formed on a single base, thus 

2(n – 3) additional edges formed on both bases.  The angles of each new edge in a 

base will sum to ½, since the additional edges we are considering exist on a face.  

The angle at every face is always ½, so the angle at edges lying on a face must 

also sum to ½.  Thus, the additional angles at newly formed edges on the bases 

will be     

€ 

2(n−3)
2 = n − 3.  Since there are n edges formed on the sides of the prism, 

using the same argument as above, an angle of     

€ 

n
2  will be added to α1(BQ) as well. 
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Figure 5.6: Additional exterior edges

In the interior, there is one edge formed on each vertical face which subdivides 

the polytope into triangular prisms.  Since one face borders two separate 

triangular prisms, the edge on the face will also border two triangular prisms, 

thus every edge between triangular prisms will contribute 1 to α1(BQ), for an 

additional angle sum of n – 3.

Figure 5.7: Additional interior edges
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When we sum 
    

€ 

(n − 3) +
n
2

+ (n − 3) , we find that 
    

€ 

5n −12
2

 has been added to α1(BQ) 

in the subdivision.  Thus 

    

€ 

α1(BQ) = α1(Ti ) −
5n −12

2i=1

3(n−2)

∑ .

The argument that α0(BQ) does not change is the same as the argument that 

α0(PQ) does not change.  Thus

    

€ 

α0(BQ) = α0(Ti )
i=1

3(n−2)

∑ .

Since γ0(P), γ1(P), and γ3(P) are all positive,     

€ 

γ2(P) =α1(P) − 2α0(P)  is the only case 

that might affect negativity.  First, we will use the fact that α1(T) = α0(T) + 1 so we 

can express γ2(BQ) in terms of α0(BQ).  Observe:

    

€ 

α1(BQ) = α1(Ti ) −
5n −12

2i=1

3(n−2)

∑

    

€ 

= (α0(Ti )
i=1

3(n−2)

∑ +1) − 5n −12
2

    

€ 

= α0(Ti ) + 3(n − 2) − 5n −12
2i=1

3(n−2)

∑

    

€ 

= α0(Ti ) +
n
2i=1

3(n−2)

∑ .
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We want to show γ2(BQ) 

€ 

≥  0.  We can substitute the above into the equation for 

γ2(BQ) along with 
    

€ 

α0(BQ) = α0(Ti )
i=1

3(n−2)

∑ .

    

€ 

γ2(BQ) =α1(BQ) − 2α0(BQ)

    

€ 

= α0
i=1

3(n−2)

∑ (Ti ) +
n
2
− 2 α0

i=1

3(n−2)

∑ (Ti )

    

€ 

=
n
2
− α0(Ti )

i=1

3(n−2)

∑ .

Recall that α0(Ti) < ½ from Chapter 2. This implies that 
    

€ 

α0(Ti ) <
3(n − 2)

2i=1

3(n−2)

∑ .  We 

add every α0 for each simplex on the left, whereas on the right we have precisely 

3(n – 2) simplices times ½. 

    

€ 

γ2(BQ) =
n
2
− α0(Ti )

i=1

3(n−2)

∑ >
n
2
−

3(n − 2)
2

= −n + 3 .

This result is inconclusive at the present time.  Since this particular method of 

subdividing an n sided prism into multiple triangular prisms yields no 

conclusive results, some other method may produce results (See Chapter 4).
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Proposition 2:

For all 3-dimensional prisms BQ,     

€ 

γ1(BQ) + γ2(BQ) = n
2 , where n represents the 

number of sides in the base pyramid.

Proof:

Consider each respective γi(BQ) in terms of αi(BQ).  We have 

γ1(BQ) + γ2(BQ) = α1(BQ) - α0(BQ).

We then have 

    

€ 

γ1(BQ) + γ2(BQ) =α1(BQ) −α0(BQ)

   
    

€ 

= α0(Ti ) +
n
2
−

i=1

3(n−2)

∑ α0(Ti )
i=1

3(n−2)

∑

   
    

€ 

=
n
2

.

Thus, for all 3-dimensional prisms, 

    

€ 

γ1(BQ) + γ2(BQ) =
n
2

.

 
         


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Chapter 6
Further Conjectures

Our current understanding of the γ-vector is fairly limited.  This honors project 

was an attempt to expand our knowledge of the subject by showing non-

negativity of prisms and pyramids for the γ-vector.  Our attempts at proving non-

negativity of the γ-vector for prisms were inconclusive, yet may be justified 

through further experimentation.  While we have shown non-negativity of the γ-

vector for pyramids, we would like to show that all polytopes in 3-dimensions 

have a non-negative γ-vector.  Furthermore, we would like to show that all d-

polytopes have a non-negative γ-vector.

Figure 6.1: 3-dimensional icosahedron is a 3-polytope that is not a prism or pyramid
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It is also conjectured that the γ-vector is non-decreasing in d-dimensions.  In the 

3-dimensional pyramid case we believe that understanding γ2 > ½ is a firm 

starting point to prove the conjecture that the γ-vector is non-decreasing for 3-

dimensional pyramids.

Our ultimate hope is that the γ-vector physically measures something.  It is 

believed that the γ-vector of simplices may measure probabilities, since all data 

we have reflects γi(T) values between 0 and 1.  We will continue to experiment 

and derive conjectures based on available data.
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Appendix A

3-Simplex

α0 α1 α2 α3 α0 - α1 γ0 γ1 γ2 γ3 γ1 + γ2
0.19639 1.19639 2 1 1 0 0.19639 0.80361 1 1
0.195026 1.195026 2 1 1 0 0.195026 0.804974 1 1
0.193677 1.193677 2 1 1 0 0.193677 0.806323 1 1
0.192348 1.192348 2 1 1 0 0.192348 0.807652 1 1
0.191042 1.191042 2 1 1 0 0.191042 0.808958 1 1
0.189764 1.189764 2 1 1 0 0.189764 0.810236 1 1
0.188515 1.188515 2 1 1 0 0.188515 0.811485 1 1
0.1873 1.1873 2 1 1 0 0.1873 0.8127 1 1
0.18612 1.18612 2 1 1 0 0.18612 0.81388 1 1
0.184977 1.184977 2 1 1 0 0.184977 0.815023 1 1
0.183874 1.183874 2 1 1 0 0.183874 0.816126 1 1
0.182812 1.182812 2 1 1 0 0.182812 0.817188 1 1
0.181792 1.181792 2 1 1 0 0.181792 0.818208 1 1
0.180815 1.180815 2 1 1 0 0.180815 0.819185 1 1
0.179883 1.179883 2 1 1 0 0.179883 0.820117 1 1
0.178995 1.178995 2 1 1 0 0.178995 0.821005 1 1
0.178152 1.178152 2 1 1 0 0.178152 0.821848 1 1
0.177355 1.177355 2 1 1 0 0.177355 0.822645 1 1
0.176602 1.176602 2 1 1 0 0.176602 0.823398 1 1
0.175895 1.175895 2 1 1 0 0.175895 0.824105 1 1
0.175232 1.175232 2 1 1 0 0.175232 0.824768 1 1
0.174613 1.174613 2 1 1 0 0.174613 0.825387 1 1
0.174037 1.174037 2 1 1 0 0.174037 0.825963 1 1
0.173504 1.173504 2 1 1 0 0.173504 0.826496 1 1
0.173012 1.173012 2 1 1 0 0.173012 0.826988 1 1
0.172561 1.172561 2 1 1 0 0.172561 0.827439 1 1
0.17215 1.17215 2 1 1 0 0.17215 0.82785 1 1
0.171777 1.171777 2 1 1 0 0.171777 0.828223 1 1
0.171442 1.171442 2 1 1 0 0.171442 0.828558 1 1
0.171143 1.171143 2 1 1 0 0.171143 0.828857 1 1
0.170879 1.170879 2 1 1 0 0.170879 0.829121 1 1
0.170649 1.170649 2 1 1 0 0.170649 0.829351 1 1
0.168857 1.168857 2 1 1 0 0.168857 0.831143 1 1
0.164635 1.164635 2 1 1 0 0.164635 0.835365 1 1
0.160535 1.160535 2 1 1 0 0.160535 0.839465 1 1
0.156554 1.156554 2 1 1 0 0.156554 0.843446 1 1
0.152688 1.152688 2 1 1 0 0.152688 0.847312 1 1
0.148936 1.148936 2 1 1 0 0.148936 0.851064 1 1
0.145292 1.145292 2 1 1 0 0.145292 0.854708 1 1
0.141755 1.141755 2 1 1 0 0.141755 0.858245 1 1
0.138321 1.138321 2 1 1 0 0.138321 0.861679 1 1
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