

Winter Cover Cropping in High Tunnels

Mid West Winter Production Conference Judson Reid & Caitlin Vore, Cornell Vegetable Program 2/17/2020 Eureka MS

This work is supported by the USDA National Institute of Food and Agriculture, Federal Capacity Funds, [1017082], The Sustainability Foundation at Cornell University, and Specialty Crops Block Grant

Fun Facts: Protected Agriculture Tomato Production

New York State ranks:

#2 in the U.S. for number of farms growing tomatoes under protection with a total of **489 operations**.

#3 in the U.S. for number of square feet under protection at **4,188,563 sq. feet**.

#4 in the U.S. in value of sales at **\$28,590,555.**

Since 2012...

64% increase in # of operations growing tomatoes47% increase in tomato sales

2017 USDA Census of Agriculture

Not so fun facts:

Intensive multi-farm high tunnel study across NYS found...

- High Tunnel soils often have excessive levels of:
 - Phosphorus (can inhibit Iron, Zinc)
 - Calcium (can inhibit uptake of Potassium)
 - Magnesium
- Rising pH above >7 (ideal 5.5-6.5)
- Fertilizers are often over applied OR they contain non-target nutrients
 - Reports of Nitrogen applied 200-600 lbs/Acre!!??

How can we :

- **increase** soil Nitrogen in a sustainable way?
- **reduce** the nutrient demand of a tomato crop?
- **reduce** the cost of fertilizing?

...all while maintaining or improving tomato yields and quality?

WINTER COVER CROPPING

Exploring...

1. <u>Species selection</u>

- Winter Grain nitrogen *scavenging*
- Legume nitrogen *fixation*
- 2. <u>Timing of planting</u>
 - Two planting dates, couple weeks apart
 - Early vs. Late
 - 2018 Dates: 10/4, 10/23

3. <u>Row Cover</u>

- Improve winter survival
- Increase biomass \rightarrow lbs. Nitrogen
- Improve stand

Treatments:

- 1) Triticale with ROW COVER
- 2) Triticale, no cover
- 3) Triticale & Austrian Field Peas with ROW COVER
- 4) Triticale & Austrian Field Peas

Compared against bare ground, uncovered control

	Plot 1				
		Triticale	Triticale		
	w/ cover Plot 2 Triticale + Field Peas		no cover		
			Triticale +		
			Field Peas		
		w/cover	no cover		
Plot 3					
	Bare Ground				

Fall/Winter

Agribon AG-19 Row

2018 – 2019 timeline

	Yield/Plant (lbs.)		Yield/Plot (lbs.)		
Treatment	Tunnel 1	Tunnel 3	Ti	unnel 1	Tunnel 3
Bare Ground	19.11	16.52		344	305
Triticale, w/ cover	15.45	21.09		278	392
Triticale, no cover	17.22	20.53		310	376
Triticale + Peas w/ cover	18.91	18.61		340	370
Triticale + Peas , no cover	17.32	17.19		312	340

Nitrogen Fertility Cost-Savings

Tunnel 1	lbs. N /Acre from cover crop
Triticale, w/ cover	73
Triticale, no cover	72
Triticale + Peas, w/ cover	40
Triticale + Peas, no cover	61

	Organic 1	N	Conventional N		
Pro-Booster	Feather Meal	Soybean Meal	Urea	Miller's	
10-0-0	13-0-0	7-1-2	46-0-0	20-20-20	
\$6.40/lb	\$8.00/lb	\$13.00/lb	\$0.43/lb	\$2.14/lb	
\$467	\$584	\$949	\$31	\$156	
\$461	\$576	\$936	\$31	\$154	
\$256	\$320	\$520	\$17	\$86	
\$390	\$488	\$793	\$26	\$131	

Tunnel 3

Triticale, w/ cover	24
Triticale, no cover	19
Triticale + Peas, w/ cover	25
Triticale + Peas, no cover	27

\$152	\$190	\$309	\$10	\$51
\$122	\$153	\$248	\$8	\$41
\$158	\$197	\$320	\$11	\$53
\$171	\$214	\$347	\$11	\$57

Year 1: Cover Crop Data

end of season biomass, (10/23/2018, *late planting*)

end of season biomass

lbs. Nitrogen contributed/Acre (10/4/2018, *early planting*)

lbs. Nitrogen contributed/Acre (10/23/2018, late planting)

lbs. Nitrogen contributed/Acre

Tunnel 1 Tunnel 3

Year 1: Tomato Data

Yield/Plant, (10/4/2018, *early planting*)

Yield/Plant, (10/23/2018, *late planting*)

of Fruit, (early planting)

of Fruit, (late planting)

Treatment

Total Yield

7.00 6.00 5.00 % Foliar Nitrogen 4.00 3.00 2.00 1.00 first harvest 0.00 13 19 21 23 25 15 17 27 29 Age of Plants (weeks) -Bare Ground -Triticale w/o cover -Triticale w/ cover -Triticale + Peas no cover -Triticale + Peas w/ cover

% Foliar Nitrogen Tomatoes, 10/4/2018, Early Planting

% Foliar Nitrogen Tomatoes, 10/23/2018, Late Planting

4.00 50 **45** 3.50 **40** 3.00 35 Price per 251b box 2.50 2.00 1.50 30 25 20 15 1.00 10 0.50 5 0.00 0 7130119 8/20/19 6/18/19 6125/19 719/19 7/16/19 7123/19 0/10/19 712/19 8/6/19 9/3/19 012419 101119 101819 8/13/19 -Bare Ground Triticale w/ cover ——Triticale no cover Triticale + Peas w/ cover — Triticale + Peas no cover – Price/25lb Box

Seasonal Prices & Tomato Yields, (10/4/2018, early planting)

Seasonal Prices & Tomato Yields, (10/23/2018, *late planting*)

1/10/2020, 11 weeks old

Legumes & N2 Fixation

- Symbiotic relationship between plants and Rhizobia bacteria
- Plant provides shelter, food ←→ bacteria fix atmospheric N2 gas into NH3
- Naturally occur in soil
- Species-specific!
- Bacteria invade the roots and produce small nodules
- Pink hue inside nodules = leghemoglobin (carries oxygen to the bacteria)
 - Is a sign that nitrogen fixation is occurring!

1/10/2020, 11 week old plant

Nitrogen Fixation Problems

- Temperature, moisture, and nutrition will impact fixation
- If legumes haven't been grown in your field , you may have a very low population of bacteria
 - Nodules should be pink inside. Old, dead nodules will be white/gray/green
- Inoculants are cheap, readily available!
 - Less than \$10 to treat 100 lbs. of seed
 - Seed contact is necessary
 - They're living organisms \rightarrow they have an expiration date
 - Store properly
- Excess Nitrogen?!
 - Rhizobia get lazy nitrogen fixation isn't necessary.
 - Much easier for plant to take up N from soil than *trade* for fixed N

	Cover Crop Seeding	Incorporation	Tomato Transplant	First Harvest	Last Harvest
Tunnel 1	10/4/2018	3/11/2019	3/21/2019	6/18/2019	9/9/2019
Tunnel 3	10/23/2018	4/24/2019	4/30/2019	7/16/2019	10/15/2019

Biomass Sampled: Tunnel 1: 11/1/2018, 1/9/2019, 2/7/2019, 3/6/2019 Tunnel 3: 11/30/2018, 1/9/2019, 2/7/2019, 3/6/2019, 3/26/2019