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ABSTRACT: Climate change is anticipated to raise overall temperatures and is likely to increase heat-related human health
morbidity and mortality risks. The objective of this work was to develop a proof-of-concept approach for estimating excess heat-
related premature deaths in the continental United States resulting from potential changes in future temperature using the BenMAP
model. In this approach we adapt the methods and tools that the US Environmental Protection Agency uses to assess air pollution
health impacts by incorporating temperature modeling and heat mortality health impact functions. This new method demonstrates
the ability to apply the existing temperature-health literature to quantify prospective changes in climate-sensitive heat-related
mortality. We compared estimates of future temperature with and without climate change and applied heat-mortality health
functions to estimate relative changes in heat-related premature mortality. Using the A1B emissions scenario, we applied the GISS-II
global circulation model downscaled to 36-km using MM5 and formatted using the Meteorology-Chemistry Interface Processor.
For averaged temperatures derived from the 5 years 2048-2052 relative to 1999-2003 we estimated for the warm season
May-September a national U.S. estimate of annual incidence of heat-related mortality to be 3700-3800 from all causes, 3500 from
cardiovascular disease, and 21 000-27 000 from nonaccidental death, applying various health impact functions. Our estimates of
mortality, produced to validate the application of a new methodology, suggest the importance of quantifying heat impacts in
economic assessments of climate change.

’ INTRODUCTION

The United States Environmental Protection Agency (US
EPA) determined that greenhouse gases (GHG) in the environ-
ment endanger the public health and welfare of current and
future generations.1 Climate variability and change in the up-
coming decades is likely, and rising temperatures are one mani-
festation of a warming planet. Heat waves and hot weather are
expected to increase in frequency.2 The intensity of heat events is
forecast to increase, and air quality may worsen.3 Global average
temperatures are projected to increase between 1.8 and 6.4 �C by
the end of this century.4 On a continental scale, changes in land
cover have already contributed to a surface warming of∼0.27 �C
per century in the United States and ∼0.05 �C per decade since
1978 in China.5-7 Heat was the primary weather-related cause of
U.S. mortality in 1995, 1998, 1999, 2000, 2001, and 20028 and
was implicated in more than 3400 fatalities between 1999 and
2003, causing more deaths than hurricanes, lightning, tornadoes,
and floods combined.9 Mortality risks increase with elevated
temperatures, they are location dependent, and certain socio-
economic factors such as age and poverty impact health risk
during a heat event.2,10,11 Increases in mortality risk occur as a
result of heat waves and also as a result of high temperatures over
longer time periods.12 The Intergovernmental Panel on Climate
Change (IPCC) states that hot days and nights, as well as heat
waves, have become more frequent in recent years.13 Climate
change is anticipated to both raise the overall temperature dis-
tribution and contribute to an increase in the frequency and
intensity of heat waves.14 Demographic shifts in the United States
are expected to produce a larger population with a higher mean
age and heightened vulnerability to heath risks.2,11

Here we describe the US EPA’s proof-of-concept approach to
estimating excess heat-related premature deaths using the En-
vironmental Benefits Mapping and Analysis Program (BenMAP)
benefits model. BenMAP was designed to estimate the health
impacts associated with a change in air quality using a damage func-
tion approach to calculate changes in the incidence of adverse
health outcomes, assigning values and summing the values for
nonoverlapping health end points to characterize total health
impacts.15 This is a standard approach used in environmental
cost-benefit analyses.16-22 We used BenMAP for the first time
to treat temperature as a pollutant, comparing estimated changes
in future temperature with and without climate change to present
day temperatures, and apply heat-mortality health functions to
estimate relative changes in mortality for the continental United
States.

’MATERIALS AND METHODS

The EPA relies on a damage function approach that relates
changes in air pollution exposure to health and productivity
impacts using health impact functions that quantify the incidence
of pollution-related adverse health events

Δy ¼ y0 3 ðeβ 3Δx - 1Þ 3 Pop
whereΔy is the change in the health or environmental effect, y0 is
the baseline incidence rate for the effect, the unitless coefficient
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beta (β) is derived from the relative risk (RR) associated with a
change in exposure as expressed in concentration-response
functions, Δx is the estimated change in exposure, and Pop is
the exposed population. This approach is considered reasonable
in spite of certain limitations.23

Health Impact Functions. The literature was surveyed for
studies linking temperature to premature mortality. We selected
five studies which reported mortality impacts during the U.S.
warm season (Table 1). The studies relied on the case-crossover
approach, analyzing heat-mortality data using conditional logistic

regression to estimate the increased risk associated with elevated
temperatures. Four studies adjusted for humidity. One study
reported a 2-day cumulative function. Two of the five studies
adjusted for ozone. Due to a RR value higher than those of the
other four studies, we treated the Basu, Dominici, and Samet
study 24 separately in a sensitivity analysis.
Population Data Sets. As described in Hubbell et al.,25 the

2000 U.S. Census block-level data set 26 is the source of pop-
ulation data used by BenMAP. These population data are then
projected to 2050 using growth factors based on an economic

Table 1. Studies of Warm Season Mortality

study

functional

form

temperature

metric threshold

relative risk

(95% CI)

beta

coefficient

standard

error

mortality

classification

study population/

study type

Basu, Feng,

and Ostro 38

conditional

logistic

regression

mean daily apparent

T (May-Sept)

none

specified

1.023

(1.01, 1.036)

per 5.55 �C

0.0040972 0.0011683 nonaccidental all ages, 9 California counties

(1999-2003); time

stratified case-crossover

Basu and

Ostro 37

conditional

logistic

regression

mean daily apparent

T (May-Sept)

none

specified

1.026 (1.013,

1.039) per

5.55 �C

0.0046248 0.0011649 cardiovascular

disease

all ages, 9 California counties

(1999-2003); time

stratified case-crossover

1.022

(1.0004, 1.04)

0.0039210 0.0017844 nonaccidental g65 yrs

Medina-

R�amon and

Schwartz 35

conditional

logistic

regression

minimum daily T,

2-day cumulative

(May-Sept)

>17 �C 1.0043 (1.0024,

1.0061) per 1 �C
(O3 adjusted)

0.0042908 0.0009399 all cause all ages, all counties

in 42 cities across

the United States

(1989-2000);

case-crossover

Zanobetti and

Schwartz 39

conditional

logistic

regression

mean daily apparent

T (May-Sept)

none

specified

1.018

(1.0109, 1.025)

per 5.55 �C
(PM2.5 and

O3 adjusted)

0.0032 0.0006 nonaccidental all ages, 9 cities across

the United States

(1999-2002);

case-crossover

Basu,

Dominici and

Samet 24

conditional

logistic

regression

mean daily apparent

T (Jun-Aug)

none

specified

1.15 (1.07, 1.24)

per 5.55 �C
0.0251823 0.0067776 combined

cardiovas-

cular and

respiratory

ages 65-99, 20 largest

metropolitan areas

of the United States

(1992), southwest; time

stratified case-crossover

1.08 (0.92, 1.26) 0.0138669 0.0144555 ages 65-99, 20 largest

metropolitan areas of the

United States (1992),

northwest; time stratified

case-crossover

1.01 (0.92, 1.11) 0.0017929 0.0086294 ages 65-99, 20 largest

metropolitan areas

of the United States

(1992), midwest; time

stratified case-crossover

1.08 (1.02, 1.15) 0.0138669 0.0055138 ages 65-99, 20 largest

metropolitan areas

of the United States

(1992), northeast; time

stratified case-crossover

1.10 (0.96, 1.27) 0.0171730 0.0128626 ages 65-99, 20 largest

metropolitan areas of the

United States (1992),

southeast; time stratified

case-crossover
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forecasting model.27 BenMAP allocated these population projec-
tions to the resolution of the air-quality model, in this case, with
36 km horizontal grid cell resolution.
Baseline Incidence Rates. The BenMAP model contains

county-level cause-specific mortality rates from the CDC-WON-
DER database.28 Using census projections of mortality rates,
BenMAP estimated the mortality rate in 5-year increments to the
year 2050. BenMAP allocated these county mortality rates to
each grid cell in the model domain using a spatial-weighting
algorithm.
Temperature Estimation. We estimated the heat-related

mortality occurring from modeled changes in temperature for
the continental United States between two time periods; the
“baseline” comprised of an average of temperatures between
1999 and 2003, and the “projected” comprised of an average
of temperatures between 2048 and 2052. To apply the effect
estimates reported in the health literature, it was necessary to

express temperatures using the same summary measurement
metrics reported in the health studies. This process is outlined in
Figure 1. For the IPCC A1B emissions scenario, the global
circulation model GISS-II 29 was used to simulate climate for the
period 1950-2055. In order to estimate the local scale impacts of
global climate change, the simulations were downscaled from the
4� 5 degree resolution to a 36-km horizontal grid cell resolution
using MM5,30,31 part of a regional climate modeling exercise,
referred to as theClimate Impact onRegional AirQuality (CIRAQ)
project for current (ca. 2000) and future (ca. 2050) climate con-
ditions.32 The Meteorology-Chemistry Interface Processor
(MCIP) 33 was used to convert the regional climate MM5 model-
ing output into Community Multiscale Air Quality (CMAQ) 34

modeling inputs. Projecting future temperatures at local scales is
a highly uncertain exercise. This analysis utilized a single future
climate realization based on a single future emissions scenario
and a single set of global-regional climate modeling. Alternate
estimates of future temperatures would yield different estimates
of health impacts.
Within each of the 15 912 grid cells representing the con-

tinental United States, we generated 43 800 hourly temperature
values for a five baseline year period (1999-2003) and for five
projected years (2048-2052). We used 5 years of data to com-
pensate for year-to-year variability due to local weather condi-
tions and applied two data aggregation approaches (Figure 1).
Method 1 involved averaging each hour’s value for each of 5 years
and then for each day’s resulting 24 mean values, selecting the
average and highest values. Method 2 involved first averaging or
selecting the highest value for each day’s 24 h separately for each
of the 5 years, followed by averaging each day’s resulting five
mean or five high values. We generated temperature values for
each day of each modeled year, but we reported BenMAP results
only for the warm season (from May 1 to Sept 30).

’RESULTS AND DISCUSSION

We generated 1-h maximum and 24-h mean temperature and
humidity-adjusted “apparent” temperature values in each 36-km
grid cell in the modeling domain (Table 2). Both 1-h maximum
and 24-h mean values for the warm season (from May 1 to Sept
30) were approximately 2 �C higher in the future scenario. The
range of 1-h maximum apparent temperatures shifted from
between -3 and 33 �C in model years 1999-2003 to between
-2 and 35 �C in model years 2048-2052. The range of 24-h
mean apparent temperatures shifted from between-7 and 30 �C
(present) to between-5 and 33 �C (future). The percentage of
modeled grid cells with projected temperature values g29 �C
rose from 3.4% (present) to 10% (future) for 24-h mean values
and from 6.8% (present) to 15% (future) for 1-h maximum values.
Median temperatures for modeled grid cells rose from 11.6
(present) to 13.8 �C (future) for 24-h mean values and from
15.6 (present) to 17.7�C(future) for 1-hmaximumvalues. Figure 2
illustrates the shift in the distribution of 24-h mean apparent
temperature. On the high end, the number of grid cells with
apparent temperatures in the range 29-31 �C rose from 547 to
820 and jumped from 0 to 850 for temperatures 31-33 �C.

For the 5 years 2048-2052 relative to 1999-2003, we esti-
mated a typical year incidence of heat-related all-cause mortality
to be 3700-3800 (95% CI 2300-5300) (0.094-0.098% of all
cause mortality), heat-related cardiovascular disease mortality to
be 3500 (95% CI 2000-5000) (0.86% of cardiovascular disease
mortality), and heat-related nonaccidental mortality to be

Figure 1. Temperature estimation algorithm.
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21 000-27 000 (95% CI 14 000-40 000) (0.57-0.73% of non-
accidental mortality). These results, shown in Figure 3, are
independent estimates of heat-related mortality and as such
should not be treated as additive. These results represent the
differences in temperature between the future and the present in
the absence of climate change mitigation activities. The wide
variation in mortality estimates reflects the variability in the
underlying concentration-response functions which were de-
rived from different populations, locations, and time periods.
Sensitivity and Scenario Analyses. We conducted sensitiv-

ity and scenario analyses to evaluate the interaction among each
of the three principal analytical inputs: temperature, health
function, and population. Starting with temperature, we found
that the results are fairly insensitive to unadjusted and apparent
temperature (Figure 3). Estimating mortality impacts using risk
estimates from Medina-Ram�on and Schwartz 35 and incorporat-
ing an exposure estimate based on apparent temperature pro-
duced a result 9% higher than the daily mean temperature. The
key difference between apparent and daily temperature is that
apparent temperature adjusts for humidity. However, the
underlying temperature data are highly correlated (see discussion

in ref 8). This finding is consistent with Anderson and Bell, who
concluded that the various temperature metrics will produce
similar results.36

In the next sensitivity analysis, we applied five region-specific
heat-related mortality impact functions based on risk estimates
from Basu et al.24 The resulting national incidence estimate of
excess heat-related all-cause mortalities in one averaged year in
the future scenario compared to the present scenario (3.1% of all
cause mortality) was more than double our estimate applying a
Basu and Ostro 37 risk estimate function to the same 65þ age
cohort. Basu et al. 24 relied on a single year’s data, whereas the
other studies used data sets of 4 years or longer. Basu et al. 24

relied on mortality data for the hottest months of June, July, and
August, whereas the other studies analyzed mortality data from
May to September. Even with application of risk estimate func-
tions with the same functional form, the same temperature metric,
the same mortality end points, and the same warm season dura-
tion, the results will differ as the RR differs. This occurred with
Basu et al. 38 versus Zanobetti and Schwartz,39 where the epidemio-
logical study areas differed and the study duration differed, the
RR values were 1.023 and 1.018, respectively, and our estimated
nonaccidental heat-related premature mortality incidence was
28% higher with Basu et al.38

Next, we considered the influence of other key inputs includ-
ing the demographic variables by performing a scenario analysis.
To account for the extended time horizon, we projected popula-
tion and baseline mortality rates. To account for the interaction
between climate change and the size and distribution of popula-
tion growth over time, we utilized four alternative population
projections generated by the Integrated Climate and Land-Use
Scenarios (ICLUS) project.40 This analysis estimated the future
size and distribution of the U.S. population based on U.S. Census
Bureau population and immigration projections and four social,
economic, and demographic storylines adapted from the IPCC
Special Report on Emission Scenarios (SRES).41 The ICLUS
project uses high, medium, and low domestic and international
migration rates in a demographic model to generate scenarios
consistent with the primary SRES storylines. The SRES describe
storylines across two axes: economic versus environmentally driven
development (A-B) and global versus regional focus (1-2).41

Each of the four scenarios (A1, A2, B1, and B2) corresponds to
different assumptions regarding economic development, fertility,
and migration. These factors, in part, determine the levels of GHG
emissions projected by climatemodels. While the ICLUS scenarios
are consistent with the SRES storylines, climate or GHG emissions
are not explicitly included in the ICLUS scenarios. We therefore
included the ICLUSpopulationprojections in order to differentiate the
effect of demographically and spatially resolved population scenarios.

Table 2. Temperature modeling results

mean temperature, �C (low, high) mean apparent temperature, �C (low, high)

method 1 method 2 method 1 method 2

1999-2003

1-h max 15.92 (-2.58; 33.24) 16.44 (-1.79; 33.42) 15.45 (-3.32; 32.68) 16.01 (-2.77; 33.04)

24-h mean 12.63 (-6.17; 26.90) 12.63 (-6.17; 26.90) 12.21 (-6.53; 30.17) 12.21 (-6.53; 30.17)

2048-2052

1-h max 17.83 (-1.06; 34.88) 18.36 (-0.33; 35.07) 17.65 (-2.21; 35.02) 18.23 (-1.64; 35.30)

24-h mean 14.59 (-4.23; 28.27) 14.59 (-4.23; 28.27) 14.45 (-5.04; 32.62) 14.45 (-5.04; 32.62)

Figure 2. Modeled 24-h mean apparent temperature for two 5-year
periods,1999-2003 (top) and 2048-2052 (bottom), for the continen-
tal United States during warm season months of May-September.
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Estimated health impacts vary significantly across the four
ICLUS population projections and the three selected tempera-
ture-mortality estimates (Figure 4). In this portion of the
analysis we selected risk estimates from studies that considered
specific regions and demographic groups to characterize the inter-
action between alternate population projections and risk among
specific groups. The results indicate that the mortality estimates
are highest under scenarios A1 and B1, irrespective of the
concentration-response function applied or demographic group
considered. The combination of a low fertility rate and high
international migration led to a population structure that is older
nationwide but particularly in the southeastern United States.
This results in a greater number of older, heat-sensitive indivi-
duals in areas of the United States with large temperature increases.
To identify the influence of population projections on our results,

we selected the most inclusive all-ages health function reported
by Zanobetti and Schwartz 39 to which we applied both ICLUS
and Woods and Poole projections. The ICLUS data produced
estimates of mortality ranging from 108% (B2 scenario) to 125%
(A1 scenario) above the Woods and Poole central-case scenario.
This scenario analysis demonstrates the influence of population
projections, assumptions about migration, and distribution of
different age groups on projected temperature-related mortality
impacts.
Several studies have projected environmental or health im-

pacts from increasing temperatures in future years (Table 3). For
three Canadian cities, Doyon et al. 42 estimated an increase in
heat-mortality for the summertime. Hayhoe et al. 43 compared
annual heat-related deaths for California cities in the 1990s to the
mid and late 21st century and concluded that heat-relatedmortality
would increase up to seven times. Deschênes and Greenstone 44

suggest that under a “business as usual” future scenario there will
be a small increase in the overall U.S. mortality rate by the end of
the 21st century but that there may be meaningful increases in
heat-related mortality rates for some sensitive groups, especially
infants. For the New York metropolitan area, current and future
climates were simulated, and estimated future year increases in
heat-related premature mortality ranged from 47% to 95%, with
acclimatization (i.e., biophysical desensitization) effects reducing
the increases by about 25%. Adjusting for acclimatization was
accomplished by using a response function derived from twoU.S.
cities with present day observed temperatures similar to those
the researchers projected for the 2050s in the New York region.
The researchers concluded that acclimatization may not com-
pletelymitigate the prematuremortality effects of climate change.45

Doyon et al. 42 presented their results in a format similar to our
present study, projecting that heat would account for 2% and
0.5% of nonaccidental mortality for 3 Quebec cities for the year
2020. We estimated 0.57-0.73% for nonaccidental mortality in
2048-2052. The large number of variables associated with a

Figure 3. Estimated increases in heat-related premature mortality in a BenMAP model-projected 2048-2052 climate scenario relative to 1999-2004
using modeled mean daily or minimum daily humidity-adjusted (apparent) and unadjusted temperature; heat impact functions taken from different
regional population studies. Method 1 is the 24-h mean or 1-h maximum for each hour’s temperatures, followed by averaging for each day. Method 2 is
averaging for each day, followed by the 24-h mean or 1-h maximum across years.

Figure 4. Sensitivity of temperature-mortality estimates to four po-
pulation projections for three temperature-mortality risk estimates.
Each of the four population projections reflects different assumptions
regarding the relationship between climate change and economic
development, fertility, and migration. The three temperature-mortality
risk estimates are based on risk estimates drawn from three different
studies of different demographic groups.
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heat-mortality analysis makes cross-study comparisons difficult.
Choices made among IPCC scenarios, temperature-mortality
functions, global and regional climate models, dates of analyses,
and study populations all influence the results. Advantages of the
present analysis include use of accepted climate models, detailed
population estimates, and a range of heat-mortality functions.
The successful use of BenMAP to estimate heat-mortality
suggests the viability of adapting an air pollutant impact model
to a heat-morbidity analysis.
Uncertainties. Similar to estimating the impacts of air pollu-

tants, BenMAP does not factor in changes in heat-related
dose-response over time. In future work, it would be illustrative
to make use of health functions reflective of adaptation or to
devise a discount factor to reduce mortality estimates from levels
derived using unacclimatized health functions. Region-specific
results acknowledging the geographic heterogeneity of heat-mor-
tality responses would add an important dimension to this analysis.
We addressed this in our sensitivity analysis using theBasu,Dominici,
and Samet region-specific functions.24 Curriero et al. also found a
strong association of temperature-mortality with latitude.46

With the inclusion of four epidemiological studies, this methodo-
logy encompasses several recognized risk influences including
age, mortality type, time (lag time, warm season), threshold, and
compounding impacts of air pollutants. Not addressed here but
of potential importance are population cohorts based on gender,
education, race, and income. Other influences that may affect the
impact of elevated temperature include acclimatization, adapta-
tion and displacement, morbidity, and productivity effects. The
regional differences in reaction to heat are also of importance.
This study does not assign regional heat-mortality functions to
geographic regions. This will tend to overstate the number of pro-
jected cases, given the evidence that residents of warm regions
exhibit a lesser sensitivity to heat than observed in colder regions.
The science of modeling climate change-related impacts is

evolving. Emissions of GHG are still rising. Future analyses
would benefit from applying observed 20th century GISS-
generated temperature estimates in BenMAP. Temperature
sensitivity has been observed in many if not all people, with the
elderly and infants at particular risk. The proportion of the U.S.
population over 65 years of age is growing over time and is
expected to reach 13% by 2010 and 20% by 2030.2 Other
subpopulation sensitivities are recognized, and recent analyses
point to combinations of characteristics;lower education/higher

poverty/higher proportion people of color/lower green space,
higher social isolation, lack of air conditioning, higher proportion
elderly/diabetes;as leading to disproportionate impacts.47

Spatial variability of the heat-mortality impact is well docu-
mented. Recent work to map disparate vulnerabilities across
the United States demonstrated higher vulnerability in the
Northeast and along the Pacific Coast and in inner city urban
areas.47 Heat events early in the warm season produce greater
mortality results than later events. These various sensitivities
emphasize the continued importance of targeted public health
responses, such as the U.S. National Weather Service’s heat
watches and warnings.
For the warm season months May-September with averaged

temperatures derived from the 5 years 2048-2052 relative to
1999-2003, our proof-of-concept approach successfully pro-
duced typical year estimates for the United States of heat-related
all-cause mortality to be 3700-3800, heat-related cardiovascular
disease mortality to be 3500, and heat-related nonaccidental
mortality to be 21 000-27 000. Numbers of this magnitude,
produced to validate the application of a new methodology, sug-
gest the importance of quantifying heat impacts in economic
assessments of climate change. Economic valuation was not
assigned in this preliminary exercise but would be an important
addition to future studies that compare benefits of reducing
GHG to potential implementation costs. Future applications of
the methodology introduced here should consider a range of
climate futures in their estimates of the health impacts of warmer
temperatures.
As we discuss above, the limited extent of the current literature

inhibited our ability to fully consider in this proof-of-concept
analysis the synergistic impacts of temperature and air pollutant
exposure, morbidity impacts, spatial heterogeneity of impacts, or
changes in cold season health impacts in the United States. We
anticipate that as the literature continues to evolve, additional
studies will provide useful inputs to future analyses of climate-
related health impacts.
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